Approximation by juntas in the symmetric group, and forbidden intersection problems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
David Ellis, Noam Lifshitz
{"title":"Approximation by juntas in the symmetric group, and forbidden intersection problems","authors":"David Ellis, Noam Lifshitz","doi":"10.1215/00127094-2021-0050","DOIUrl":null,"url":null,"abstract":"A family of permutations $\\mathcal{F} \\subset S_{n}$ is said to be $t$-intersecting if any two permutations in $\\mathcal{F}$ agree on at least $t$ points. It is said to be $(t-1)$-intersection-free if no two permutations in $\\mathcal{F}$ agree on exactly $t-1$ points. If $S,T \\subset \\{1,2,\\ldots,n\\}$ with $|S|=|T|$, and $\\pi: S \\to T$ is a bijection, the $\\pi$-star in $S_n$ is the family of all permutations in $S_n$ that agree with $\\pi$ on all of $S$. An $s$-star is a $\\pi$-star such that $\\pi$ is a bijection between sets of size $s$. Friedgut and Pilpel, and independently the first author, showed that if $\\mathcal{F} \\subset S_n$ is $t$-intersecting, and $n$ is sufficiently large depending on $t$, then $|\\mathcal{F}| \\leq (n-t)!$; this proved a conjecture of Deza and Frankl from 1977. Equality holds only if $\\mathcal{F}$ is a $t$-star. \nIn this paper, we give a more `robust' proof of a strengthening of the Deza-Frankl conjecture, namely that if $n$ is sufficiently large depending on $t$, and $\\mathcal{F} \\subset S_n$ is $(t-1)$-intersection-free, then $|\\mathcal{F} \\leq (n-t)!$, with equality only if $\\mathcal{F}$ is a $t$-star. The main ingredient of our proof is a `junta approximation' result, namely, that any $(t-1)$-intersection-free family of permutations is essentially contained in a $t$-intersecting {\\em junta} (a `junta' being a union of a bounded number of $O(1)$-stars). The proof of our junta approximation result relies, in turn, on a weak regularity lemma for families of permutations, a combinatorial argument that `bootstraps' a weak notion of pseudorandomness into a stronger one, and finally a spectral argument for pairs of highly-pseudorandom fractional families. Our proof employs four different notions of pseudorandomness, three being combinatorial in nature, and one being algebraic.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2021-0050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 8

Abstract

A family of permutations $\mathcal{F} \subset S_{n}$ is said to be $t$-intersecting if any two permutations in $\mathcal{F}$ agree on at least $t$ points. It is said to be $(t-1)$-intersection-free if no two permutations in $\mathcal{F}$ agree on exactly $t-1$ points. If $S,T \subset \{1,2,\ldots,n\}$ with $|S|=|T|$, and $\pi: S \to T$ is a bijection, the $\pi$-star in $S_n$ is the family of all permutations in $S_n$ that agree with $\pi$ on all of $S$. An $s$-star is a $\pi$-star such that $\pi$ is a bijection between sets of size $s$. Friedgut and Pilpel, and independently the first author, showed that if $\mathcal{F} \subset S_n$ is $t$-intersecting, and $n$ is sufficiently large depending on $t$, then $|\mathcal{F}| \leq (n-t)!$; this proved a conjecture of Deza and Frankl from 1977. Equality holds only if $\mathcal{F}$ is a $t$-star. In this paper, we give a more `robust' proof of a strengthening of the Deza-Frankl conjecture, namely that if $n$ is sufficiently large depending on $t$, and $\mathcal{F} \subset S_n$ is $(t-1)$-intersection-free, then $|\mathcal{F} \leq (n-t)!$, with equality only if $\mathcal{F}$ is a $t$-star. The main ingredient of our proof is a `junta approximation' result, namely, that any $(t-1)$-intersection-free family of permutations is essentially contained in a $t$-intersecting {\em junta} (a `junta' being a union of a bounded number of $O(1)$-stars). The proof of our junta approximation result relies, in turn, on a weak regularity lemma for families of permutations, a combinatorial argument that `bootstraps' a weak notion of pseudorandomness into a stronger one, and finally a spectral argument for pairs of highly-pseudorandom fractional families. Our proof employs four different notions of pseudorandomness, three being combinatorial in nature, and one being algebraic.
对称群中群的逼近和禁交问题
如果$\mathcal{F}$中的任意两个排列至少在$t$点上一致,则称排列族$\mathcal{F} \subset S_{n}$是$t$相交的。如果在$\mathcal{F}$中没有两个排列恰好在$t-1$点上一致,则称其为$(t-1)$ -无交集。如果$S,T \subset \{1,2,\ldots,n\}$与$|S|=|T|$对应,$\pi: S \to T$是一个双射,则$S_n$中的$\pi$ -星号表示$S_n$中与$\pi$在所有$S$上一致的所有排列的族。$s$ -星号是$\pi$ -星号,使得$\pi$是大小为$s$的集合之间的双射。Friedgut和Pilpel,以及独立的第一作者,证明了如果$\mathcal{F} \subset S_n$与$t$相交,并且$n$对$t$的依赖足够大,那么$|\mathcal{F}| \leq (n-t)!$;这证明了Deza和Frankl在1977年的一个猜想。只有当$\mathcal{F}$是$t$ -星时,等式才成立。在本文中,我们给出了Deza-Frankl猜想的一个更“鲁棒”的强化证明,即如果$n$依赖于$t$足够大,并且$\mathcal{F} \subset S_n$是$(t-1)$ -无交集的,那么$|\mathcal{F} \leq (n-t)!$,只有当$\mathcal{F}$是$t$ -星时才具有相等性。我们证明的主要成分是一个“团近似”结果,即任何$(t-1)$ -无交集的排列族本质上包含在一个$t$ -交集的团中(一个“团”是一个有限数量的{\em}$O(1)$ -星的并)。我们的军政府近似结果的证明反过来依赖于置换族的弱正则引理,一个将伪随机的弱概念“引导”为强概念的组合论证,最后是对高度伪随机的分数族的谱论证。我们的证明采用了四种不同的伪随机性概念,其中三种本质上是组合的,一种是代数的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信