{"title":"Non-uniform dependence on initial data for equations of Whitham type","authors":"Mathias Nikolai Arnesen","doi":"10.57262/ade/1554256825","DOIUrl":null,"url":null,"abstract":"We consider the Cauchy problem ∂tu + u∂xu + L(∂xu) = 0, u(0, x) = u0(x) on the torus and on the real line for a class of Fourier multiplier operators L, and prove that the solution map u0 7→ u(t) is not uniformly continuous in H(T) or H(R) for s > 3 2 . Under certain assumptions, the result also hold for s > 0. The class of equations considered includes in particular the Whitham equation and fractional Korteweg-de Vries equations and we show that, in general, the flow map cannot be uniformly continuous if the dispersion of L is weaker than that of the KdV operator. The result is proved by constructing two sequences of solutions converging to the same limit at the initial time, while the distance at a later time is bounded below by a positive constant.","PeriodicalId":53312,"journal":{"name":"Advances in Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade/1554256825","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
We consider the Cauchy problem ∂tu + u∂xu + L(∂xu) = 0, u(0, x) = u0(x) on the torus and on the real line for a class of Fourier multiplier operators L, and prove that the solution map u0 7→ u(t) is not uniformly continuous in H(T) or H(R) for s > 3 2 . Under certain assumptions, the result also hold for s > 0. The class of equations considered includes in particular the Whitham equation and fractional Korteweg-de Vries equations and we show that, in general, the flow map cannot be uniformly continuous if the dispersion of L is weaker than that of the KdV operator. The result is proved by constructing two sequences of solutions converging to the same limit at the initial time, while the distance at a later time is bounded below by a positive constant.
期刊介绍:
Advances in Differential Equations will publish carefully selected, longer research papers on mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new and non-trivial. Emphasis will be placed on papers that are judged to be specially timely, and of interest to a substantial number of mathematicians working in this area.