Estimating marginal likelihoods from the posterior draws through a geometric identity

IF 0.8 Q3 STATISTICS & PROBABILITY
Johannes Reichl
{"title":"Estimating marginal likelihoods from the posterior draws through a geometric identity","authors":"Johannes Reichl","doi":"10.1515/mcma-2020-2068","DOIUrl":null,"url":null,"abstract":"Abstract This article develops a new estimator of the marginal likelihood that requires only a sample of the posterior distribution as the input from the analyst. This sample may come from any sampling scheme, such as Gibbs sampling or Metropolis–Hastings sampling. The presented approach can be implemented generically in almost any application of Bayesian modeling and significantly decreases the computational burdens associated with marginal likelihood estimation compared to existing techniques. The functionality of this method is demonstrated in the context of probit and logit regressions, on two mixtures of normals models, and also on a high-dimensional random intercept probit. Simulation results show that the simple approach presented here achieves excellent stability in low-dimensional models, and also clearly outperforms existing methods when the number of coefficients in the model increases.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"26 1","pages":"205 - 221"},"PeriodicalIF":0.8000,"publicationDate":"2020-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mcma-2020-2068","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2020-2068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract This article develops a new estimator of the marginal likelihood that requires only a sample of the posterior distribution as the input from the analyst. This sample may come from any sampling scheme, such as Gibbs sampling or Metropolis–Hastings sampling. The presented approach can be implemented generically in almost any application of Bayesian modeling and significantly decreases the computational burdens associated with marginal likelihood estimation compared to existing techniques. The functionality of this method is demonstrated in the context of probit and logit regressions, on two mixtures of normals models, and also on a high-dimensional random intercept probit. Simulation results show that the simple approach presented here achieves excellent stability in low-dimensional models, and also clearly outperforms existing methods when the number of coefficients in the model increases.
通过几何恒等式从后验图估计边际似然
摘要本文提出了一种新的边际似然估计方法,它只需要后验分布的一个样本作为分析者的输入。该样本可以来自任何抽样方案,如吉布斯抽样或大都会黑斯廷斯抽样。所提出的方法可以在几乎任何贝叶斯建模的应用中普遍实现,并且与现有技术相比,显著减少了与边际似然估计相关的计算负担。在probit和logit回归的背景下,在两种正态模型的混合物上,以及在高维随机截距probit上,证明了该方法的功能。仿真结果表明,本文提出的简单方法在低维模型中具有良好的稳定性,当模型中系数数量增加时,也明显优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信