Existence and uniqueness of solutions to discrete,third-order three-point boundary value problems

IF 0.5 Q3 MATHEMATICS
S. S. Almuthaybiri, J. Jonnalagadda, C. Tisdell
{"title":"Existence and uniqueness of solutions to discrete,third-order three-point boundary value problems","authors":"S. S. Almuthaybiri, J. Jonnalagadda, C. Tisdell","doi":"10.4067/s0719-06462021000300441","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to move towards a more complete understanding of the qualitative properties of solutions to discrete boundary value problems. In particular, we introduce and develop sufficient conditions under which the existence of a unique solution for a third-order difference equation subject to three-point boundary conditions is guaranteed. Our contribu-tions are realized in the following ways. First, we construct the corresponding Green’s function for the problem and formulate some new bounds on its summation. Second, we apply these properties to the boundary value problem by drawing on Banach’s fixed point theorem in conjunction with interesting metrics and appropriate inequalities. We discuss several examples to illustrate the nature of our advancements. contribuciones son de dos tipos. En primer lugar, construimos las funciones de Green correspondientes para el problema y formulamos nuevas cotas para su suma. En se-gundo lugar, aplicamos estas propiedades al problema de valor en la frontera usando el teorema del punto fijo de Banach junto con métricas interesantes y desigualdades apropiadas. Discutimos varios ejemplos para ilustrar la naturaleza de nuestros avances.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/s0719-06462021000300441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this article is to move towards a more complete understanding of the qualitative properties of solutions to discrete boundary value problems. In particular, we introduce and develop sufficient conditions under which the existence of a unique solution for a third-order difference equation subject to three-point boundary conditions is guaranteed. Our contribu-tions are realized in the following ways. First, we construct the corresponding Green’s function for the problem and formulate some new bounds on its summation. Second, we apply these properties to the boundary value problem by drawing on Banach’s fixed point theorem in conjunction with interesting metrics and appropriate inequalities. We discuss several examples to illustrate the nature of our advancements. contribuciones son de dos tipos. En primer lugar, construimos las funciones de Green correspondientes para el problema y formulamos nuevas cotas para su suma. En se-gundo lugar, aplicamos estas propiedades al problema de valor en la frontera usando el teorema del punto fijo de Banach junto con métricas interesantes y desigualdades apropiadas. Discutimos varios ejemplos para ilustrar la naturaleza de nuestros avances.
离散三阶三点边值问题解的存在唯一性
本文的目的是为了更全面地理解离散边值问题解的定性性质。特别地,我们引入并发展了三阶差分方程在三点边界条件下唯一解存在的充分条件。我们的贡献是通过以下方式实现的。首先,我们构造了相应的格林函数,并在其和上给出了一些新的界。其次,我们利用Banach不动点定理,结合有趣的度量和适当的不等式,将这些性质应用于边值问题。我们将讨论几个例子来说明我们进步的本质。贡献的儿子,DOS tipos。在此基础上,对绿色对应的函数进行了解释,并通过公式对问题进行了解释。在此基础上,我们提出了一种新的解决方案,即解决所有问题和解决问题的方法,并提出了一种新的解决方案,即解决问题和解决问题的方法。讨论各种各样的就业机会,举例说明自然的新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信