On the relationship between the turning and singular points in Sturm–Liouville equations

IF 0.1 Q4 MATHEMATICS
Y. Khalili, A. Neamaty
{"title":"On the relationship between the turning and singular points in Sturm–Liouville equations","authors":"Y. Khalili, A. Neamaty","doi":"10.1080/25742558.2018.1464880","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we present some results about the Sturm–Liouville equation with turning points and singularities and transform them to each other. By applying a change of a variable, we can transform the differential equation with a turning point to the differential equation with a singularity. Also we will prove that a differential equation with a singularity will be transformed to a differential equation with a turning point in some cases.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25742558.2018.1464880","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25742558.2018.1464880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this article, we present some results about the Sturm–Liouville equation with turning points and singularities and transform them to each other. By applying a change of a variable, we can transform the differential equation with a turning point to the differential equation with a singularity. Also we will prove that a differential equation with a singularity will be transformed to a differential equation with a turning point in some cases.
Sturm–Liouville方程中转向点与奇异点的关系
摘要在本文中,我们给出了关于具有转折点和奇异点的Sturm–Liouville方程的一些结果,并将它们相互转换。通过应用变量的变化,我们可以将具有转折点的微分方程转换为具有奇异性的微分方程。我们还将证明,在某些情况下,具有奇异性的微分方程将转化为具有转折点的微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信