Characterizations of heat kernel estimates for symmetric non-local Dirichlet forms via resistance forms

IF 0.4 4区 数学 Q4 MATHEMATICS
Sheng-Hui Chen, Jian Wang
{"title":"Characterizations of heat kernel estimates for symmetric non-local Dirichlet forms via resistance forms","authors":"Sheng-Hui Chen, Jian Wang","doi":"10.2748/tmj.20190625","DOIUrl":null,"url":null,"abstract":"Motivated by [5], we obtain new equivalent conditions for two-sided heat kernel estimates of symmetric non-local Dirichlet forms in terms of resistance forms. Characterizations for upper bounds of heat kernel estimates as well as near diagonal lower bounds of Dirichlet heat kernel estimates are also established. These results can be seen as a complement of the recent studies on heat kernel estimates and parabolic Harnack inequalities for symmetric non-local Dirichlet forms in [10, 11].","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":"72 1","pages":"507-526"},"PeriodicalIF":0.4000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2748/tmj.20190625","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by [5], we obtain new equivalent conditions for two-sided heat kernel estimates of symmetric non-local Dirichlet forms in terms of resistance forms. Characterizations for upper bounds of heat kernel estimates as well as near diagonal lower bounds of Dirichlet heat kernel estimates are also established. These results can be seen as a complement of the recent studies on heat kernel estimates and parabolic Harnack inequalities for symmetric non-local Dirichlet forms in [10, 11].
通过电阻形式刻画对称非局部Dirichlet形式的热核估计
受[5]的启发,我们获得了对称非局部Dirichlet形式的电阻形式的双侧热核估计的新的等价条件。还建立了热核估计上界和Dirichlet热核估计的近对角线下界的特征。这些结果可以被视为[10,11]中关于对称非局部Dirichlet形式的热核估计和抛物型Harnack不等式的最新研究的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
22
审稿时长
>12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信