{"title":"Permeability of fractal porous materials composed of different combinations of capillary tubes","authors":"A. Miguel","doi":"10.1504/ijhm.2020.10029511","DOIUrl":null,"url":null,"abstract":"Non-Newtonian fluid flows in porous materials are important in many industrial engineering and bio-engineering applications. Emerging fields have led to personalised design of porous structures used, e.g., in biomaterials. Here, prefractal porous material to transport power-law fluids is studied. Materials formed by bundles of capillary tubes and dendritic networks of tubes are considered. As a result, approaches to quantity the permeability are presented in terms of void fraction of the material, maximum capillary diameter and fractal dimensions. Our approaches enable a better understanding of flow characteristics in these materials, and their consequences for designers of engineering applications such as for microfluidic devices.","PeriodicalId":29937,"journal":{"name":"International Journal of Hydromechatronics","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydromechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijhm.2020.10029511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Non-Newtonian fluid flows in porous materials are important in many industrial engineering and bio-engineering applications. Emerging fields have led to personalised design of porous structures used, e.g., in biomaterials. Here, prefractal porous material to transport power-law fluids is studied. Materials formed by bundles of capillary tubes and dendritic networks of tubes are considered. As a result, approaches to quantity the permeability are presented in terms of void fraction of the material, maximum capillary diameter and fractal dimensions. Our approaches enable a better understanding of flow characteristics in these materials, and their consequences for designers of engineering applications such as for microfluidic devices.