Certain maps preserving self-homotopy equivalences

IF 0.5 4区 数学
Jin-ho Lee, Toshihiro Yamaguchi
{"title":"Certain maps preserving self-homotopy equivalences","authors":"Jin-ho Lee,&nbsp;Toshihiro Yamaguchi","doi":"10.1007/s40062-016-0144-0","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\mathcal {E}(X)\\)</span> be the group of homotopy classes of self homotopy equivalences for a connected CW complex <i>X</i>. We consider two classes of maps, <span>\\(\\mathcal {E}\\)</span>-maps and co-<span>\\(\\mathcal {E}\\)</span>-maps. They are defined as the maps <span>\\(X\\rightarrow Y\\)</span> that induce homomorphisms <span>\\(\\mathcal {E}(X)\\rightarrow \\mathcal {E}( Y)\\)</span> and <span>\\(\\mathcal {E}(Y)\\rightarrow \\mathcal {E}(X)\\)</span>, respectively. We give some rationalized examples related to spheres, Lie groups and homogeneous spaces by using Sullivan models. Furthermore, we introduce an <span>\\(\\mathcal {E}\\)</span>-equivalence relation between rationalized spaces <span>\\(X_{{\\mathbb Q}}\\)</span> and <span>\\(Y_{{\\mathbb Q}}\\)</span> as a geometric realization of an isomorphism <span>\\(\\mathcal {E}(X_{{\\mathbb Q}})\\cong \\mathcal {E}(Y_{{\\mathbb Q}})\\)</span>.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"12 3","pages":"691 - 706"},"PeriodicalIF":0.5000,"publicationDate":"2016-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-016-0144-0","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-016-0144-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\mathcal {E}(X)\) be the group of homotopy classes of self homotopy equivalences for a connected CW complex X. We consider two classes of maps, \(\mathcal {E}\)-maps and co-\(\mathcal {E}\)-maps. They are defined as the maps \(X\rightarrow Y\) that induce homomorphisms \(\mathcal {E}(X)\rightarrow \mathcal {E}( Y)\) and \(\mathcal {E}(Y)\rightarrow \mathcal {E}(X)\), respectively. We give some rationalized examples related to spheres, Lie groups and homogeneous spaces by using Sullivan models. Furthermore, we introduce an \(\mathcal {E}\)-equivalence relation between rationalized spaces \(X_{{\mathbb Q}}\) and \(Y_{{\mathbb Q}}\) as a geometric realization of an isomorphism \(\mathcal {E}(X_{{\mathbb Q}})\cong \mathcal {E}(Y_{{\mathbb Q}})\).

某些保持自同伦等价的映射
设\(\mathcal {E}(X)\)为连通CW复x的自同伦等价的同伦类群。我们考虑两类映射,\(\mathcal {E}\) -映射和co- \(\mathcal {E}\) -映射。它们被定义为分别诱导同态\(\mathcal {E}(X)\rightarrow \mathcal {E}( Y)\)和\(\mathcal {E}(Y)\rightarrow \mathcal {E}(X)\)的映射\(X\rightarrow Y\)。利用沙利文模型给出了关于球、李群和齐次空间的合理化例子。进一步,我们引入了理顺空间\(X_{{\mathbb Q}}\)和\(Y_{{\mathbb Q}}\)之间的\(\mathcal {E}\) -等价关系,作为同构\(\mathcal {E}(X_{{\mathbb Q}})\cong \mathcal {E}(Y_{{\mathbb Q}})\)的几何实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信