МЕТОДИКА ПОШУКУ КОМПЛЕКСНИХ РОЗВ’ЯЗКІВ НЕРІВНОСТЕЙ СПОСОБОМ НЕВ’ЯЗКИ

Залмен Філєр, Артем Чуйков
{"title":"МЕТОДИКА ПОШУКУ КОМПЛЕКСНИХ РОЗВ’ЯЗКІВ НЕРІВНОСТЕЙ СПОСОБОМ НЕВ’ЯЗКИ","authors":"Залмен Філєр, Артем Чуйков","doi":"10.31110/2413-1571-2021-031-5-011","DOIUrl":null,"url":null,"abstract":"Формулювання проблеми. Традиційно у школі розглядають нерівності у множині дійсних чисел. Розв’язуючи нерівності із невідомим, обмежуються відшуканням області, у якій виконується вимога більше (менше). Між іншим, у низці задач важливо на скільки відрізняються величини. При цьому виявляються і комплексні розв’язки при дійсній нев’язці. \nМатеріали і методи. У статті використані методи математичного аналізу та теорії функції комплексної змінної, а також аналіз і моделювання – для розробки алгоритмів графічного подання результатів у системі комп’ютерної математики Maple.\nРезультати. Запропоновано використовувати комплексну нев’язку r = s + it, де s > 0 або s = 0 і t > 0, яка дає комплексні розв’язки нерівностей. Множиною усіх розв’язків нерівності, отриманих методом комплексної нев’язки, є двовимірна область. Причому, нерівності з протилежними знаками мають розв’язки, які взаємно доповнюють один одного до комплексної площини. Показано приклади застосування методу комплексної нев’язки для розв’язування квадратних, раціональних та інших нерівностей. Продемонстровано застосування системи комп’ютерної математики Maple 17 для графічної побудови області-розв’язків нерівностей. \nВисновки. Поданий матеріал може бути корисний вчителям, викладачам закладів фахової передвищої та вищої освіти при вивченні теми «Комплексні числа». Нерівності у комплексній множині  розглядалися епізодично, наприклад, при доведенні леми Д’Аламбера про значення модуля комплексного аргументу в сусідніх точках в околі точки, де він не дорівнює нулю. Ці нерівності можна використати для пошуку коренів комплексних функцій. Подальші наукові дослідження у цьому напрямку полягають у систематизації та класифікації нерівностей та методів їх розв’язання у комплексній площині.","PeriodicalId":52608,"journal":{"name":"Fizikomatematichna osvita","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fizikomatematichna osvita","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31110/2413-1571-2021-031-5-011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Формулювання проблеми. Традиційно у школі розглядають нерівності у множині дійсних чисел. Розв’язуючи нерівності із невідомим, обмежуються відшуканням області, у якій виконується вимога більше (менше). Між іншим, у низці задач важливо на скільки відрізняються величини. При цьому виявляються і комплексні розв’язки при дійсній нев’язці. Матеріали і методи. У статті використані методи математичного аналізу та теорії функції комплексної змінної, а також аналіз і моделювання – для розробки алгоритмів графічного подання результатів у системі комп’ютерної математики Maple. Результати. Запропоновано використовувати комплексну нев’язку r = s + it, де s > 0 або s = 0 і t > 0, яка дає комплексні розв’язки нерівностей. Множиною усіх розв’язків нерівності, отриманих методом комплексної нев’язки, є двовимірна область. Причому, нерівності з протилежними знаками мають розв’язки, які взаємно доповнюють один одного до комплексної площини. Показано приклади застосування методу комплексної нев’язки для розв’язування квадратних, раціональних та інших нерівностей. Продемонстровано застосування системи комп’ютерної математики Maple 17 для графічної побудови області-розв’язків нерівностей. Висновки. Поданий матеріал може бути корисний вчителям, викладачам закладів фахової передвищої та вищої освіти при вивченні теми «Комплексні числа». Нерівності у комплексній множині  розглядалися епізодично, наприклад, при доведенні леми Д’Аламбера про значення модуля комплексного аргументу в сусідніх точках в околі точки, де він не дорівнює нулю. Ці нерівності можна використати для пошуку коренів комплексних функцій. Подальші наукові дослідження у цьому напрямку полягають у систематизації та класифікації нерівностей та методів їх розв’язання у комплексній площині.
寻找复杂规则的方法
问题表述。他们通常在学校里看到一组实数中的不平等现象。解决未知领域的不平等问题仅限于找到一个满足更多(更少)要求的领域。顺便说一句,重要的是底部的值有多不同。现实世界中也有复杂的解决方案。材料和方法。文中所用的数学方法和复变函数理论,Maple计算机数学系统中图形输出算法开发的分析和建模。结果。建议使用复数链接r[UNK]=[UNK]s[UNK]+[UNK]It,其中s[UNK]>[UNK][UNK]0或s[UNK]=[UNK]0和t[UNK]>[UNK][UNK]0,这提供了不等式的复杂解。通过复杂大脑方法获得的所有不等式解中的大多数是二维的。因此,符号相反的不等式具有在复杂区域中相互补充的解。给出了使用复键方法求解平方不等式、有理不等式和其他不等式的例子。Maple 17计算机数学的应用已经被证明可以图形化地构建不等式解的区域。后果这些材料对教师、高等教育机构的教师在学习“复数”时很有用。复集合中的不等式被周期性地考虑,例如,当发现D’Alamber单元是复变元模在不等于零的点周围的相邻点处的值时。这些不等式可以用来寻找复杂函数的根。在这个方向上的进一步科学研究是关于将不平等现象系统化和分类,并在一个复杂的领域解决它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
66
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信