Nicolas M Tremblay, Simon Barthelm'e, K. Usevich, P. Amblard
{"title":"Extended L-ensembles: A new representation for determinantal point processes","authors":"Nicolas M Tremblay, Simon Barthelm'e, K. Usevich, P. Amblard","doi":"10.1214/22-aap1824","DOIUrl":null,"url":null,"abstract":"Determinantal point processes (DPPs) are a class of repulsive point processes, popular for their relative simplicity. They are traditionally defined via their marginal distributions, but a subset of DPPs called\"L-ensembles\"have tractable likelihoods and are thus particularly easy to work with. Indeed, in many applications, DPPs are more naturally defined based on the L-ensemble formulation rather than through the marginal kernel. The fact that not all DPPs are L-ensembles is unfortunate, but there is a unifying description. We introduce here extended L-ensembles, and show that all DPPs are extended L-ensembles (and vice-versa). Extended L-ensembles have very simple likelihood functions, contain L-ensembles and projection DPPs as special cases. From a theoretical standpoint, they fix some pathologies in the usual formalism of DPPs, for instance the fact that projection DPPs are not L-ensembles. From a practical standpoint, they extend the set of kernel functions that may be used to define DPPs: we show that conditional positive definite kernels are good candidates for defining DPPs, including DPPs that need no spatial scale parameter. Finally, extended L-ensembles are based on so-called ``saddle-point matrices'', and we prove an extension of the Cauchy-Binet theorem for such matrices that may be of independent interest.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1824","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 6
Abstract
Determinantal point processes (DPPs) are a class of repulsive point processes, popular for their relative simplicity. They are traditionally defined via their marginal distributions, but a subset of DPPs called"L-ensembles"have tractable likelihoods and are thus particularly easy to work with. Indeed, in many applications, DPPs are more naturally defined based on the L-ensemble formulation rather than through the marginal kernel. The fact that not all DPPs are L-ensembles is unfortunate, but there is a unifying description. We introduce here extended L-ensembles, and show that all DPPs are extended L-ensembles (and vice-versa). Extended L-ensembles have very simple likelihood functions, contain L-ensembles and projection DPPs as special cases. From a theoretical standpoint, they fix some pathologies in the usual formalism of DPPs, for instance the fact that projection DPPs are not L-ensembles. From a practical standpoint, they extend the set of kernel functions that may be used to define DPPs: we show that conditional positive definite kernels are good candidates for defining DPPs, including DPPs that need no spatial scale parameter. Finally, extended L-ensembles are based on so-called ``saddle-point matrices'', and we prove an extension of the Cauchy-Binet theorem for such matrices that may be of independent interest.
期刊介绍:
The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.