Nicolas M Tremblay, Simon Barthelm'e, K. Usevich, P. Amblard
{"title":"Extended L-ensembles: A new representation for determinantal point processes","authors":"Nicolas M Tremblay, Simon Barthelm'e, K. Usevich, P. Amblard","doi":"10.1214/22-aap1824","DOIUrl":null,"url":null,"abstract":"Determinantal point processes (DPPs) are a class of repulsive point processes, popular for their relative simplicity. They are traditionally defined via their marginal distributions, but a subset of DPPs called\"L-ensembles\"have tractable likelihoods and are thus particularly easy to work with. Indeed, in many applications, DPPs are more naturally defined based on the L-ensemble formulation rather than through the marginal kernel. The fact that not all DPPs are L-ensembles is unfortunate, but there is a unifying description. We introduce here extended L-ensembles, and show that all DPPs are extended L-ensembles (and vice-versa). Extended L-ensembles have very simple likelihood functions, contain L-ensembles and projection DPPs as special cases. From a theoretical standpoint, they fix some pathologies in the usual formalism of DPPs, for instance the fact that projection DPPs are not L-ensembles. From a practical standpoint, they extend the set of kernel functions that may be used to define DPPs: we show that conditional positive definite kernels are good candidates for defining DPPs, including DPPs that need no spatial scale parameter. Finally, extended L-ensembles are based on so-called ``saddle-point matrices'', and we prove an extension of the Cauchy-Binet theorem for such matrices that may be of independent interest.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1824","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
Determinantal point processes (DPPs) are a class of repulsive point processes, popular for their relative simplicity. They are traditionally defined via their marginal distributions, but a subset of DPPs called"L-ensembles"have tractable likelihoods and are thus particularly easy to work with. Indeed, in many applications, DPPs are more naturally defined based on the L-ensemble formulation rather than through the marginal kernel. The fact that not all DPPs are L-ensembles is unfortunate, but there is a unifying description. We introduce here extended L-ensembles, and show that all DPPs are extended L-ensembles (and vice-versa). Extended L-ensembles have very simple likelihood functions, contain L-ensembles and projection DPPs as special cases. From a theoretical standpoint, they fix some pathologies in the usual formalism of DPPs, for instance the fact that projection DPPs are not L-ensembles. From a practical standpoint, they extend the set of kernel functions that may be used to define DPPs: we show that conditional positive definite kernels are good candidates for defining DPPs, including DPPs that need no spatial scale parameter. Finally, extended L-ensembles are based on so-called ``saddle-point matrices'', and we prove an extension of the Cauchy-Binet theorem for such matrices that may be of independent interest.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.