Asymptotic behavior of encompassing test for independent processes: Case of linear and nearest neighbor regressions

IF 0.1 Q4 MATHEMATICS
Patrick Rakotomarolahy
{"title":"Asymptotic behavior of encompassing test for independent processes: Case of linear and nearest neighbor regressions","authors":"Patrick Rakotomarolahy","doi":"10.1080/25742558.2020.1805092","DOIUrl":null,"url":null,"abstract":"Abstract Encompassing test has been well developed for fully parametric modeling. In this study, we are interested on encompassing test for parametric and nonparametric regression methods. We consider linear regression for parametric modeling and nearest neighbor regression for nonparametric methods. We establish asymptotic normality of encompassing statistic associated to the encompassing hypotheses for the linear parametric method and the nonparametric nearest neighbor regression estimate. We also obtain convergence rate depending only on the number of neighbors while it depends on the number of observation and the bandwidth for kernel method. We achieve the same convergence rate when . Moreover, asymptotic variance of the encompassing statistic associated to kernel regression depends on the density, this is not the case for nearest neighbor regression estimate.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25742558.2020.1805092","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25742558.2020.1805092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Encompassing test has been well developed for fully parametric modeling. In this study, we are interested on encompassing test for parametric and nonparametric regression methods. We consider linear regression for parametric modeling and nearest neighbor regression for nonparametric methods. We establish asymptotic normality of encompassing statistic associated to the encompassing hypotheses for the linear parametric method and the nonparametric nearest neighbor regression estimate. We also obtain convergence rate depending only on the number of neighbors while it depends on the number of observation and the bandwidth for kernel method. We achieve the same convergence rate when . Moreover, asymptotic variance of the encompassing statistic associated to kernel regression depends on the density, this is not the case for nearest neighbor regression estimate.
独立过程包络检验的渐近行为:线性和最近邻回归的情况
摘要:全参数化建模的包络试验已经得到了很好的发展。在本研究中,我们对参数和非参数回归方法的包含检验感兴趣。我们考虑线性回归的参数建模和最近邻回归的非参数方法。对于线性参数方法和非参数最近邻回归估计,我们建立了包含统计量与包含假设相关的渐近正态性。我们还得到了只依赖于邻居数的收敛速率,而它依赖于观测数和核方法的带宽。我们得到相同的收敛速率。此外,与核回归相关的包含统计量的渐近方差取决于密度,这不是最近邻回归估计的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信