Subamorphous Thermal Conductivity of Crystalline Half-Heusler Superlattices

IF 2.7 3区 工程技术 Q2 ENGINEERING, MECHANICAL
E. Chávez‐Ángel, N. Reuter, P. Komar, S. Heinz, U. Kolb, H. Kleebe, G. Jakob
{"title":"Subamorphous Thermal Conductivity of Crystalline Half-Heusler Superlattices","authors":"E. Chávez‐Ángel, N. Reuter, P. Komar, S. Heinz, U. Kolb, H. Kleebe, G. Jakob","doi":"10.1080/15567265.2018.1505987","DOIUrl":null,"url":null,"abstract":"ABSTRACT The quest to improve the thermoelectric figure of merit has mainly followed the roadmap of lowering the thermal conductivity while keeping unaltered the power factor of the material. Ideally an electron-crystal phonon-glass system is desired. In this work, we report an extraordinary reduction of the cross-plane thermal conductivity in crystalline (TiNiSn):(HfNiSn) half-Heusler superlattices (SLs). We create SLs with thermal conductivities below the effective amorphous limit, which is kept in a large temperature range (120–300 K). We measured thermal conductivity at room temperature values as low as 0.75 W m−1 K−1, the lowest thermal conductivity value reported so far for half-Heusler compounds. By changing the deposition conditions, we also demonstrate that the thermal conductivity is highly impacted by the way the single segments of the SL grow. These findings show a huge potential for thermoelectric generators where an extraordinary reduction of the thermal conductivity is required but without losing the crystal quality of the system","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"23 1","pages":"1 - 9"},"PeriodicalIF":2.7000,"publicationDate":"2018-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2018.1505987","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2018.1505987","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 7

Abstract

ABSTRACT The quest to improve the thermoelectric figure of merit has mainly followed the roadmap of lowering the thermal conductivity while keeping unaltered the power factor of the material. Ideally an electron-crystal phonon-glass system is desired. In this work, we report an extraordinary reduction of the cross-plane thermal conductivity in crystalline (TiNiSn):(HfNiSn) half-Heusler superlattices (SLs). We create SLs with thermal conductivities below the effective amorphous limit, which is kept in a large temperature range (120–300 K). We measured thermal conductivity at room temperature values as low as 0.75 W m−1 K−1, the lowest thermal conductivity value reported so far for half-Heusler compounds. By changing the deposition conditions, we also demonstrate that the thermal conductivity is highly impacted by the way the single segments of the SL grow. These findings show a huge potential for thermoelectric generators where an extraordinary reduction of the thermal conductivity is required but without losing the crystal quality of the system
结晶半Heusler超晶格的亚形态热导率
摘要提高热电性能因数的主要途径是在保持材料功率因数不变的同时降低热导率。理想情况下,需要电子-晶体-声子玻璃系统。在这项工作中,我们报道了晶体(TiNiSn):(HfNiSn的)半Heusler超晶格(SL)的跨平面热导率的显著降低。我们创造了热导率低于有效非晶极限的SL,该极限保持在大的温度范围(120–300 K)内。我们在室温下测量了低至0.75 W m−1 K−1的热导率,这是迄今为止报道的半Heusler化合物的最低热导率值。通过改变沉积条件,我们还证明了SL的单段生长方式对热导率的影响很大。这些发现表明,热电发电机具有巨大的潜力,需要显著降低热导率,但又不会损失系统的晶体质量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale and Microscale Thermophysical Engineering
Nanoscale and Microscale Thermophysical Engineering 工程技术-材料科学:表征与测试
CiteScore
5.90
自引率
2.40%
发文量
12
审稿时长
3.3 months
期刊介绍: Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation. The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as: transport and interactions of electrons, phonons, photons, and spins in solids, interfacial energy transport and phase change processes, microscale and nanoscale fluid and mass transport and chemical reaction, molecular-level energy transport, storage, conversion, reaction, and phase transition, near field thermal radiation and plasmonic effects, ultrafast and high spatial resolution measurements, multi length and time scale modeling and computations, processing of nanostructured materials, including composites, micro and nanoscale manufacturing, energy conversion and storage devices and systems, thermal management devices and systems, microfluidic and nanofluidic devices and systems, molecular analysis devices and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信