AI ethical biases: normative and information systems development conceptual framework

IF 2.8 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
T. Chowdhury, J. Oredo
{"title":"AI ethical biases: normative and information systems development conceptual framework","authors":"T. Chowdhury, J. Oredo","doi":"10.1080/12460125.2022.2062849","DOIUrl":null,"url":null,"abstract":"ABSTRACT Alongside the revolutionary benefits of AI, it can cause numerous problems across the system development process. AI ecosytem players have recently started to interrogate the ethical biases implicit in AI-enabled applications and agents. The contestable nature of ethics and the complexity of AI-enabled applications has led to incoherent literature around AI ethical biases. The numerous conceptions of AI ethics and a multiplicity of ethical biases has compounded matters for researchers, practitioners, and policy makers. The current study proposes a conceptual framework to organize AI ethical biases. A narrative literature review was conducted to identify and group the biases into data biases, method biases and implementation biases. The CRISP-DM framework was used to classify the ethical biases. The emerging conceptual framework has four clusters that represents: System development phases, scope of ethical bias, exemplars, and possible solutions. The study extends the existing AI ethical frameworks and provides a unified communication artefact for practitioners.","PeriodicalId":45565,"journal":{"name":"Journal of Decision Systems","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Decision Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/12460125.2022.2062849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT Alongside the revolutionary benefits of AI, it can cause numerous problems across the system development process. AI ecosytem players have recently started to interrogate the ethical biases implicit in AI-enabled applications and agents. The contestable nature of ethics and the complexity of AI-enabled applications has led to incoherent literature around AI ethical biases. The numerous conceptions of AI ethics and a multiplicity of ethical biases has compounded matters for researchers, practitioners, and policy makers. The current study proposes a conceptual framework to organize AI ethical biases. A narrative literature review was conducted to identify and group the biases into data biases, method biases and implementation biases. The CRISP-DM framework was used to classify the ethical biases. The emerging conceptual framework has four clusters that represents: System development phases, scope of ethical bias, exemplars, and possible solutions. The study extends the existing AI ethical frameworks and provides a unified communication artefact for practitioners.
人工智能伦理偏见:规范和信息系统发展概念框架
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Decision Systems
Journal of Decision Systems OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
6.30
自引率
23.50%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信