Abdi Hassan Muse, C. Chesneau, Oscar Ngesa, S. Mwalili
{"title":"Flexible Parametric Accelerated Hazard Model: Simulation and Application to Censored Lifetime Data with Crossing Survival Curves","authors":"Abdi Hassan Muse, C. Chesneau, Oscar Ngesa, S. Mwalili","doi":"10.3390/mca27060104","DOIUrl":null,"url":null,"abstract":"This study aims to propose a flexible, fully parametric hazard-based regression model for censored time-to-event data with crossing survival curves. We call it the accelerated hazard (AH) model. The AH model can be written with or without a baseline distribution for lifetimes. The former assumption results in parametric regression models, whereas the latter results in semi-parametric regression models, which are by far the most commonly used in time-to-event analysis. However, under certain conditions, a parametric hazard-based regression model may produce more efficient estimates than a semi-parametric model. The parametric AH model, on the other hand, is inappropriate when the baseline distribution is exponential because it is constant over time; similarly, when the baseline distribution is the Weibull distribution, the AH model coincides with the accelerated failure time (AFT) and proportional hazard (PH) models. The use of a versatile parametric baseline distribution (generalized log-logistic distribution) for modeling the baseline hazard rate function is investigated. For the parameters of the proposed AH model, the classical (via maximum likelihood estimation) and Bayesian approaches using noninformative priors are discussed. A comprehensive simulation study was conducted to assess the performance of the proposed model’s estimators. A real-life right-censored gastric cancer dataset with crossover survival curves is used to demonstrate the tractability and utility of the proposed fully parametric AH model. The study concluded that the parametric AH model is effective and could be useful for assessing a variety of survival data types with crossover survival curves.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca27060104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3
Abstract
This study aims to propose a flexible, fully parametric hazard-based regression model for censored time-to-event data with crossing survival curves. We call it the accelerated hazard (AH) model. The AH model can be written with or without a baseline distribution for lifetimes. The former assumption results in parametric regression models, whereas the latter results in semi-parametric regression models, which are by far the most commonly used in time-to-event analysis. However, under certain conditions, a parametric hazard-based regression model may produce more efficient estimates than a semi-parametric model. The parametric AH model, on the other hand, is inappropriate when the baseline distribution is exponential because it is constant over time; similarly, when the baseline distribution is the Weibull distribution, the AH model coincides with the accelerated failure time (AFT) and proportional hazard (PH) models. The use of a versatile parametric baseline distribution (generalized log-logistic distribution) for modeling the baseline hazard rate function is investigated. For the parameters of the proposed AH model, the classical (via maximum likelihood estimation) and Bayesian approaches using noninformative priors are discussed. A comprehensive simulation study was conducted to assess the performance of the proposed model’s estimators. A real-life right-censored gastric cancer dataset with crossover survival curves is used to demonstrate the tractability and utility of the proposed fully parametric AH model. The study concluded that the parametric AH model is effective and could be useful for assessing a variety of survival data types with crossover survival curves.
期刊介绍:
Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.