Midfidelity model verification for a point-absorbing wave energy converter with linear power take-off

Q3 Engineering
E. Katsidoniotaki, Yi-Hsiang Yu, M. Göteman
{"title":"Midfidelity model verification for a point-absorbing wave energy converter with linear power take-off","authors":"E. Katsidoniotaki, Yi-Hsiang Yu, M. Göteman","doi":"10.36688/imej.5.67-75","DOIUrl":null,"url":null,"abstract":"In the preliminary design stage of a waveenergy converter (WEC), researchers need fast and reliablesimulation tools. High-fidelity numerical models are usu-ally employed to study the wave-structure interaction, butthe computational cost is demanding. As an alternative,midfidelity models can provide simulations in the order ofreal time. In this study, we operate Uppsala University’sWEC in a relatively mild sea state and model it usingWEC-Sim. The model is verified based on OpenFOAMsimulations. To analyze the ability of the midfidelitymodel to capture WEC dynamics, we investigate the systemseparately with 1, 2, and 3 degrees of freedom. We examinethe contribution of viscous phenomena, and study bothlinear and weakly nonlinear solutions provided by WEC-Sim. Our results indicate that the viscous effects can beneglected in heave and surge motion, but not for pitch.We also find that the weakly nonlinear WEC-Sim solutionsuccessfully agrees with the computational fluid dynam-ics, whereas the linear solution could suggest misleadingresults.","PeriodicalId":36111,"journal":{"name":"International Marine Energy Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Marine Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36688/imej.5.67-75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In the preliminary design stage of a waveenergy converter (WEC), researchers need fast and reliablesimulation tools. High-fidelity numerical models are usu-ally employed to study the wave-structure interaction, butthe computational cost is demanding. As an alternative,midfidelity models can provide simulations in the order ofreal time. In this study, we operate Uppsala University’sWEC in a relatively mild sea state and model it usingWEC-Sim. The model is verified based on OpenFOAMsimulations. To analyze the ability of the midfidelitymodel to capture WEC dynamics, we investigate the systemseparately with 1, 2, and 3 degrees of freedom. We examinethe contribution of viscous phenomena, and study bothlinear and weakly nonlinear solutions provided by WEC-Sim. Our results indicate that the viscous effects can beneglected in heave and surge motion, but not for pitch.We also find that the weakly nonlinear WEC-Sim solutionsuccessfully agrees with the computational fluid dynam-ics, whereas the linear solution could suggest misleadingresults.
带线性功率输出的点吸收波能转换器的中保真度模型验证
在波能转换器(WEC)的初步设计阶段,研究人员需要快速可靠的仿真工具。波浪-结构相互作用的研究通常采用高保真数值模型,但计算成本高。作为替代方案,中保真度模型可以提供按实时顺序的仿真。在本研究中,我们在相对温和的海况下操作乌普萨拉大学的wec,并使用wec - sim进行建模。基于openfoamsimulation对模型进行了验证。为了分析中保真度模型捕捉WEC动态的能力,我们分别用1、2和3个自由度研究了系统。我们考察了粘性现象的贡献,并研究了WEC-Sim提供的线性和弱非线性解。结果表明,在升沉和喘振运动中,粘性效应可以忽略不计,而在俯仰运动中则不能忽略。我们还发现,弱非线性的WEC-Sim解与计算流体动力学很好地吻合,而线性解可能会产生误导的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Marine Energy Journal
International Marine Energy Journal Engineering-Ocean Engineering
CiteScore
1.70
自引率
0.00%
发文量
24
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信