{"title":"MICROBIAL CO-CULTIVATION: DISCOVERY OF NOVEL SECONDARY METABOLITES WITH DIFFERENT BIOLOGICAL ACTIVITIES","authors":"T. Pirog","doi":"10.15407/biotech16.01.021","DOIUrl":null,"url":null,"abstract":"In recent decades, overuse and misuse of antibiotics as well as social and economic factors have accelerated the spread of antibiotic-resistant bacteria, making them a major problem for humanity. One of the most effective approaches to the discovery of new secondary antimicrobial metabolites is co-cultivation of microorganisms, in which the producer of the target products is grown together with competitive microorganisms ( inductors), in response to the presence of which silent biosynthetic genes of the producer strain are activated and an increase in the biological activity of the synthesized secondary metabolites and/or even the synthesis of new metabolites is observed. The review summarizes the current literature data on the co-cultivation of antimicrobial substances producers with competitive microorganisms, which results in the synthesis of new metabolites with antimicrobial and cytotoxic activity, not typical for monocultures. During the co-cultivation of fungi, bacteria, and fungi with bacteria, the synthesis of new antimicrobial and anticancer metabolites, which are classified as alkaloids, phenylpropanoids, macrolides, polyketides, cyclopeptides, terpenoids, anthraquinones, and steroids, is observed. These data indicate that the mixed fermentation of microorganisms is a simple, cheap, and quite effective way to obtain new metabolites that are promising for use in medicine.","PeriodicalId":9267,"journal":{"name":"Biotechnologia Acta","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnologia Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/biotech16.01.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent decades, overuse and misuse of antibiotics as well as social and economic factors have accelerated the spread of antibiotic-resistant bacteria, making them a major problem for humanity. One of the most effective approaches to the discovery of new secondary antimicrobial metabolites is co-cultivation of microorganisms, in which the producer of the target products is grown together with competitive microorganisms ( inductors), in response to the presence of which silent biosynthetic genes of the producer strain are activated and an increase in the biological activity of the synthesized secondary metabolites and/or even the synthesis of new metabolites is observed. The review summarizes the current literature data on the co-cultivation of antimicrobial substances producers with competitive microorganisms, which results in the synthesis of new metabolites with antimicrobial and cytotoxic activity, not typical for monocultures. During the co-cultivation of fungi, bacteria, and fungi with bacteria, the synthesis of new antimicrobial and anticancer metabolites, which are classified as alkaloids, phenylpropanoids, macrolides, polyketides, cyclopeptides, terpenoids, anthraquinones, and steroids, is observed. These data indicate that the mixed fermentation of microorganisms is a simple, cheap, and quite effective way to obtain new metabolites that are promising for use in medicine.