Development of radiolabeled dextran coated iron oxide nanoparticles with 111-In and its biodistribution studies

Q4 Health Professions
S. M. Anijdan, Amir Gholami, A. Lahooti
{"title":"Development of radiolabeled dextran coated iron oxide nanoparticles with 111-In and its biodistribution studies","authors":"S. M. Anijdan, Amir Gholami, A. Lahooti","doi":"10.18869/ACADPUB.IJRR.18.3.539","DOIUrl":null,"url":null,"abstract":"Background: The main aim of this study is to radiolabel dextran coated iron oxide nanoparticles (NPs) (with 80 nm hydrodynamic size) with the Indium-111 and evaluation their biodistribution after intravenous injection normal mice. Materials and Method: The chelator Diethylenetriamine Pentaacetic Acid (DTPA) dianhydride was conjugated to SPION using a small modification of the well-known cyclic anhydride method at a ratio of 1:5 (NPs:DTPA) molar ratio. The reaction was purified with magnetic assorting columns (MACs) using high gradient magnetic field following incubation. Then the radiochemical purity of the radiolabeled NPs were determined using RTLC method. The magnetic properties of nanoparticles were measured by a 1.5 tesla clinical human MRI. Results: The NPs showed high super paramagnetic properties whereas their r2/r1 was 17.6. The RTLC showed that the purity of compound was above 99% after purification and the compound has shown a good in-vitro stability until 6 hours in the presence of human serum. The biodistribution of In-DTPA-NPs in mice demonstrated high uptake in the reticuloendothelial system (RES) and the blood clearance was so fast. Conclusion: Due to magnificent uptakes of this radiotracer in the liver and spleen, its stability and their fast clearance from other tissues, especially in blood, it is suggested that this radiotracer would be suitable for RES theranostics purposes.","PeriodicalId":14498,"journal":{"name":"Iranian Journal of Radiation Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Radiation Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18869/ACADPUB.IJRR.18.3.539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 3

Abstract

Background: The main aim of this study is to radiolabel dextran coated iron oxide nanoparticles (NPs) (with 80 nm hydrodynamic size) with the Indium-111 and evaluation their biodistribution after intravenous injection normal mice. Materials and Method: The chelator Diethylenetriamine Pentaacetic Acid (DTPA) dianhydride was conjugated to SPION using a small modification of the well-known cyclic anhydride method at a ratio of 1:5 (NPs:DTPA) molar ratio. The reaction was purified with magnetic assorting columns (MACs) using high gradient magnetic field following incubation. Then the radiochemical purity of the radiolabeled NPs were determined using RTLC method. The magnetic properties of nanoparticles were measured by a 1.5 tesla clinical human MRI. Results: The NPs showed high super paramagnetic properties whereas their r2/r1 was 17.6. The RTLC showed that the purity of compound was above 99% after purification and the compound has shown a good in-vitro stability until 6 hours in the presence of human serum. The biodistribution of In-DTPA-NPs in mice demonstrated high uptake in the reticuloendothelial system (RES) and the blood clearance was so fast. Conclusion: Due to magnificent uptakes of this radiotracer in the liver and spleen, its stability and their fast clearance from other tissues, especially in blood, it is suggested that this radiotracer would be suitable for RES theranostics purposes.
放射性标记右旋糖酐包被的111In氧化铁纳米粒子的研制及其生物分布研究
背景:本研究的主要目的是用铟-111放射性标记右旋糖酐包被的氧化铁纳米颗粒(流体动力学尺寸为80nm),并评估其在正常小鼠静脉注射后的生物分布。材料和方法:将螯合剂二亚乙基三胺五乙酸(DTPA)二酐与SPION以1:5(NPs:DTPA)摩尔比偶联。孵育后用高梯度磁场用磁性分选柱(MACs)纯化反应物。然后使用RTLC方法测定放射性标记的NP的放射化学纯度。通过1.5特斯拉临床人体MRI测量纳米颗粒的磁性能。结果:纳米颗粒具有较高的超顺磁性,其r2/r1为17.6。RTLC显示纯化后化合物的纯度在99%以上,并且该化合物在人血清存在下显示出良好的体外稳定性直到6小时。In-DTPA NPs在小鼠中的生物分布显示出在网状内皮系统(RES)中的高摄取,并且血液清除非常快。结论:由于该放射性示踪剂在肝脏和脾脏中的吸收量大,其稳定性强,并且能快速清除其他组织,特别是血液中的放射性示踪剂,因此该放射性示踪剂适合于RES的治疗目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iranian Journal of Radiation Research
Iranian Journal of Radiation Research RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
0.67
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Iranian Journal of Radiation Research (IJRR) publishes original scientific research and clinical investigations related to radiation oncology, radiation biology, and Medical and health physics. The clinical studies submitted for publication include experimental studies of combined modality treatment, especially chemoradiotherapy approaches, and relevant innovations in hyperthermia, brachytherapy, high LET irradiation, nuclear medicine, dosimetry, tumor imaging, radiation treatment planning, radiosensitizers, and radioprotectors. All manuscripts must pass stringent peer-review and only papers that are rated of high scientific quality are accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信