Reversed Strichartz estimates for wave on non-trapping asymptotically hyperbolic manifolds and applications

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Y. Sire, C. Sogge, Chengbo Wang, Junyong Zhang
{"title":"Reversed Strichartz estimates for wave on non-trapping asymptotically hyperbolic manifolds and applications","authors":"Y. Sire, C. Sogge, Chengbo Wang, Junyong Zhang","doi":"10.1080/03605302.2022.2047724","DOIUrl":null,"url":null,"abstract":"Abstract We provide reversed Strichartz estimates for the shifted wave equations on non-trapping asymptotically hyperbolic manifolds using cluster estimates for spectral projectors proved previously in such generality. As a consequence, we solve a problem left open in Sire et al [Trans. AMS 373(2020):7639-7668] about the endpoint case for global well-posedness of nonlinear wave equations. We also provide estimates in this context for the maximal wave operator.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2022.2047724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract We provide reversed Strichartz estimates for the shifted wave equations on non-trapping asymptotically hyperbolic manifolds using cluster estimates for spectral projectors proved previously in such generality. As a consequence, we solve a problem left open in Sire et al [Trans. AMS 373(2020):7639-7668] about the endpoint case for global well-posedness of nonlinear wave equations. We also provide estimates in this context for the maximal wave operator.
非陷波渐近双曲流形上波的逆Strichartz估计及其应用
摘要我们利用先前证明的谱投影的聚类估计,为非陷波渐近双曲流形上的位移波方程提供了逆Strichartz估计。因此,我们解决了Sire等人[Trans.AMS 373(2020):7639-7668]中留下的关于非线性波动方程的全局适定性的端点情况的问题。在这种情况下,我们还提供了对最大波算子的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信