{"title":"Thermodynamics and Phase Transition of Gravitational Global and Local Monopole","authors":"Seyedeh Fatemeh Mirekhtiary, İzzet Sakallı","doi":"10.1134/S0202289322020098","DOIUrl":null,"url":null,"abstract":"<p>We compute the Hawking temperature of a regular self-gravitating ’t Hooft–Polyakov magnetic monopole in global and local monopole black holes. To this end, we apply two different methods: the tunneling method and the topological method, which both yield the standard Hawking temperatures of these two geometries. We then study a phase transition in the vicinity of the Planck scale. Based on the Hamilton–Jacobi (HJ) equation, by using the corrected classical action, the quantum tunneling method is applied to derive the corrected Hawking temperature within the framework of the generalized uncertainty principle. In the sequel, we check the validity of the first law of thermodynamics and test the thermodynamic instability for the global and local monopole black holes.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":"28 2","pages":"175 - 185"},"PeriodicalIF":1.2000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gravitation and Cosmology","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S0202289322020098","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We compute the Hawking temperature of a regular self-gravitating ’t Hooft–Polyakov magnetic monopole in global and local monopole black holes. To this end, we apply two different methods: the tunneling method and the topological method, which both yield the standard Hawking temperatures of these two geometries. We then study a phase transition in the vicinity of the Planck scale. Based on the Hamilton–Jacobi (HJ) equation, by using the corrected classical action, the quantum tunneling method is applied to derive the corrected Hawking temperature within the framework of the generalized uncertainty principle. In the sequel, we check the validity of the first law of thermodynamics and test the thermodynamic instability for the global and local monopole black holes.
期刊介绍:
Gravitation and Cosmology is a peer-reviewed periodical, dealing with the full range of topics of gravitational physics and relativistic cosmology and published under the auspices of the Russian Gravitation Society and Peoples’ Friendship University of Russia. The journal publishes research papers, review articles and brief communications on the following fields: theoretical (classical and quantum) gravitation; relativistic astrophysics and cosmology, exact solutions and modern mathematical methods in gravitation and cosmology, including Lie groups, geometry and topology; unification theories including gravitation; fundamental physical constants and their possible variations; fundamental gravity experiments on Earth and in space; related topics. It also publishes selected old papers which have not lost their topicality but were previously published only in Russian and were not available to the worldwide research community