Generalized Bernoulli process: simulation, estimation, and application

IF 0.6 Q4 STATISTICS & PROBABILITY
Jeonghwa Lee
{"title":"Generalized Bernoulli process: simulation, estimation, and application","authors":"Jeonghwa Lee","doi":"10.1515/demo-2021-0106","DOIUrl":null,"url":null,"abstract":"Abstract A generalized Bernoulli process (GBP) is a stationary process consisting of binary variables that can capture long-memory property. In this paper, we propose a simulation method for a sample path of GBP and an estimation method for the parameters in GBP. Method of moments estimation and maximum likelihood estimation are compared through empirical results from simulation. Application of GBP in earthquake data during the years of 1800-2020 in the region of conterminous U.S. is provided.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"9 1","pages":"141 - 155"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2021-0106","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2021-0106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract A generalized Bernoulli process (GBP) is a stationary process consisting of binary variables that can capture long-memory property. In this paper, we propose a simulation method for a sample path of GBP and an estimation method for the parameters in GBP. Method of moments estimation and maximum likelihood estimation are compared through empirical results from simulation. Application of GBP in earthquake data during the years of 1800-2020 in the region of conterminous U.S. is provided.
广义伯努利过程:模拟、估计及应用
广义伯努利过程(GBP)是由具有长记忆特性的二元变量组成的平稳过程。在本文中,我们提出了一种GBP样本路径的仿真方法和GBP中参数的估计方法。通过仿真的经验结果对矩估计方法和极大似然估计方法进行了比较。给出了GBP在1800-2020年美国邻近地区地震资料中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dependence Modeling
Dependence Modeling STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to):  -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信