Remarks on weak convergence of complex Monge–Ampère measures

Pub Date : 2024-01-01 DOI:10.1016/j.indag.2023.08.001
Mohamed El Kadiri
{"title":"Remarks on weak convergence of complex Monge–Ampère measures","authors":"Mohamed El Kadiri","doi":"10.1016/j.indag.2023.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></math></span> be a decreasing sequence of psh functions in the domain of definition <span><math><mi>D</mi></math></span> of the Monge–Ampère operator on a domain <span><math><mi>Ω</mi></math></span> of <span><math><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> such that <span><math><mrow><mi>u</mi><mo>=</mo><msub><mrow><mo>inf</mo></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></math></span> is plurisubharmonic on <span><math><mi>Ω</mi></math></span>. In this paper we are interested in the problem of finding conditions insuring that <span><span><span><math><mrow><munder><mrow><mo>lim</mo></mrow><mrow><mi>j</mi><mo>→</mo><mo>+</mo><mi>∞</mi></mrow></munder><mo>∫</mo><mi>φ</mi><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><mo>∫</mo><mi>φ</mi><mo>NP</mo><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span></span></span>for any continuous function on <span><math><mi>Ω</mi></math></span> with compact support, where <span><math><mrow><mo>NP</mo><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> is the nonpolar part of <span><math><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></math></span>, and conditions implying that <span><math><mrow><mi>u</mi><mo>∈</mo><mi>D</mi></mrow></math></span>. For <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><mo>max</mo><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mo>−</mo><mi>j</mi><mo>)</mo></mrow></mrow></math></span> these conditions imply also that <span><span><span><math><mrow><munder><mrow><mo>lim</mo></mrow><mrow><mi>j</mi><mo>→</mo><mo>+</mo><mi>∞</mi></mrow></munder><msub><mrow><mo>∫</mo></mrow><mrow><mi>K</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>K</mi></mrow></msub><mo>NP</mo><msup><mrow><mrow><mo>(</mo><mi>d</mi><msup><mrow><mi>d</mi></mrow><mrow><mi>c</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span></span></span>for any compact set <span><math><mrow><mi>K</mi><mo>⊂</mo><mrow><mo>{</mo><mi>u</mi><mo>&gt;</mo><mo>−</mo><mi>∞</mi><mo>}</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let (uj) be a decreasing sequence of psh functions in the domain of definition D of the Monge–Ampère operator on a domain Ω of n such that u=infjuj is plurisubharmonic on Ω. In this paper we are interested in the problem of finding conditions insuring that limj+φ(ddcuj)n=φNP(ddcu)nfor any continuous function on Ω with compact support, where NP(ddcu)n is the nonpolar part of (ddcu)n, and conditions implying that uD. For uj=max(u,j) these conditions imply also that limj+K(ddcuj)n=KNP(ddcu)nfor any compact set K{u>}.

分享
查看原文
复monge - ampante测度的弱收敛性
设 (uj)是在ℂn 的域Ω上的 Monge-Ampère 算子定义域 D 中的 psh 函数的递减序列,使得 u=infjuj 在 Ω 上是全次谐波。在本文中,我们感兴趣的问题是,对于Ω上任何具有紧凑支持的连续函数,如何找到条件确保limj→+∞∫φ(ddcuj)n=∫φNP(ddcu)n,其中NP(ddcu)n是(ddcu)n的非极性部分,以及意味着u∈D的条件。对于uj=max(u,-j),这些条件还意味着,对于任何紧凑集K⊂{u>-∞},limj→+∞∫K(ddcuj)n=∫KNP(ddcu)n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信