Certain Varieties of Resolving Sets of A Graph

IF 0.3 Q4 MATHEMATICS
B. Sooryanarayana, Suma A.S., Chandrakala S.B.
{"title":"Certain Varieties of Resolving Sets of A Graph","authors":"B. Sooryanarayana, Suma A.S., Chandrakala S.B.","doi":"10.22342/JIMS.27.1.881.103-114","DOIUrl":null,"url":null,"abstract":"Let G=(V,E) be a simple connected graph. For each ordered subset S={s_1,s_2,...,s_k} of V and a vertex u in V, we associate a vector Gamma(u/S)=(d(u,s_1),d(u,s_2),...,d(u,s_k)) with respect to S, where d(u,v) denote the distance between u and v in G. A subset S is said to be resolving set of G if Gamma(u/S) not equal to Gamma(v/S) for all u, v in V-S. The purpose of this paper is to introduce various types of r-sets and compute minimum cardinality of each set, in possible cases, particulary for paths, cycles, complete graphs and wheels.","PeriodicalId":42206,"journal":{"name":"Journal of the Indonesian Mathematical Society","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indonesian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22342/JIMS.27.1.881.103-114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Let G=(V,E) be a simple connected graph. For each ordered subset S={s_1,s_2,...,s_k} of V and a vertex u in V, we associate a vector Gamma(u/S)=(d(u,s_1),d(u,s_2),...,d(u,s_k)) with respect to S, where d(u,v) denote the distance between u and v in G. A subset S is said to be resolving set of G if Gamma(u/S) not equal to Gamma(v/S) for all u, v in V-S. The purpose of this paper is to introduce various types of r-sets and compute minimum cardinality of each set, in possible cases, particulary for paths, cycles, complete graphs and wheels.
图的若干解集
设G=(V,E)是一个简单连通图。对于V的每个有序子集S={S_1,S_2,…,S_k}和V中的顶点u,我们将向量Gamma(u/S)=(d(u,S_1),d(u、S_2),。。。,d(u,s_k)),其中d(u、v)表示G中u和v之间的距离。如果对于v-s中的所有u、v,Gamma(u/s)不等于Gamma(v/s),则子集s被称为G的解析集。本文的目的是介绍各种类型的r-集,并计算每个集的最小基数,在可能的情况下,特别是对于路径、循环、完全图和轮子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信