{"title":"Preparation and Characterization of Curcumin Niosomal Nanoparticles via a Simple and Eco-friendly Route","authors":"Zahra Zinatloo-Ajabshir, S. Zinatloo-Ajabshir","doi":"10.22052/JNS.2019.04.020","DOIUrl":null,"url":null,"abstract":"In this investigation, curcumin niosomal nanoparticles were prepared via a simple, efficient and eco-friendly route, thin film hydration (TFH), in the presence of different mixture of the surfactants (tween 60 and span 60). Cholesterol ratio to surfactant, as effective factor, was altered to obtain the optimal nanoparticles. The size, zeta potential, size distribution, entrapment efficiency of the prepared nanoparticles were examined and compared. The optimum nanoparticles were chosen to examine the release from the dialysis membrane. Ratio of cholesterol to surfactant was found to have key and notable influence on the size, zeta potential, size distribution, entrapment efficiency of the prepared nanoparticles. The nanoparticles prepared with Formulations 3 and 5 as optimum nanoparticles were chosen to examine the release from the dialysis membrane. The results denoted that by increasing the ratio of cholesterol to surfactant, the rate of curcumin release was enhanced from the membrane. High quantities of cholesterol in the formulation 3, in addition to explosive release, can lead to slow release.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"9 1","pages":"784-790"},"PeriodicalIF":1.4000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2019.04.020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 31
Abstract
In this investigation, curcumin niosomal nanoparticles were prepared via a simple, efficient and eco-friendly route, thin film hydration (TFH), in the presence of different mixture of the surfactants (tween 60 and span 60). Cholesterol ratio to surfactant, as effective factor, was altered to obtain the optimal nanoparticles. The size, zeta potential, size distribution, entrapment efficiency of the prepared nanoparticles were examined and compared. The optimum nanoparticles were chosen to examine the release from the dialysis membrane. Ratio of cholesterol to surfactant was found to have key and notable influence on the size, zeta potential, size distribution, entrapment efficiency of the prepared nanoparticles. The nanoparticles prepared with Formulations 3 and 5 as optimum nanoparticles were chosen to examine the release from the dialysis membrane. The results denoted that by increasing the ratio of cholesterol to surfactant, the rate of curcumin release was enhanced from the membrane. High quantities of cholesterol in the formulation 3, in addition to explosive release, can lead to slow release.
期刊介绍:
Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.