A non-geodesic analogue of Reshetnyak’s majorization theorem

Pub Date : 2019-07-22 DOI:10.1515/agms-2022-0151
T. Toyoda
{"title":"A non-geodesic analogue of Reshetnyak’s majorization theorem","authors":"T. Toyoda","doi":"10.1515/agms-2022-0151","DOIUrl":null,"url":null,"abstract":"Abstract For any real number κ \\kappa and any integer n ≥ 4 n\\ge 4 , the Cycl n ( κ ) {{\\rm{Cycl}}}_{n}\\left(\\kappa ) condition introduced by Gromov (CAT(κ)-spaces: construction and concentration, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280 (2001), (Geom. i Topol. 7), 100–140, 299–300) is a necessary condition for a metric space to admit an isometric embedding into a CAT ( κ ) {\\rm{CAT}}\\left(\\kappa ) space. For geodesic metric spaces, satisfying the Cycl 4 ( κ ) {{\\rm{Cycl}}}_{4}\\left(\\kappa ) condition is equivalent to being CAT ( κ ) {\\rm{CAT}}\\left(\\kappa ) . In this article, we prove an analogue of Reshetnyak’s majorization theorem for (possibly non-geodesic) metric spaces that satisfy the Cycl 4 ( κ ) {{\\rm{Cycl}}}_{4}\\left(\\kappa ) condition. It follows from our result that for general metric spaces, the Cycl 4 ( κ ) {{\\rm{Cycl}}}_{4}\\left(\\kappa ) condition implies the Cycl n ( κ ) {{\\rm{Cycl}}}_{n}\\left(\\kappa ) conditions for all integers n ≥ 5 n\\ge 5 .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2022-0151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract For any real number κ \kappa and any integer n ≥ 4 n\ge 4 , the Cycl n ( κ ) {{\rm{Cycl}}}_{n}\left(\kappa ) condition introduced by Gromov (CAT(κ)-spaces: construction and concentration, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280 (2001), (Geom. i Topol. 7), 100–140, 299–300) is a necessary condition for a metric space to admit an isometric embedding into a CAT ( κ ) {\rm{CAT}}\left(\kappa ) space. For geodesic metric spaces, satisfying the Cycl 4 ( κ ) {{\rm{Cycl}}}_{4}\left(\kappa ) condition is equivalent to being CAT ( κ ) {\rm{CAT}}\left(\kappa ) . In this article, we prove an analogue of Reshetnyak’s majorization theorem for (possibly non-geodesic) metric spaces that satisfy the Cycl 4 ( κ ) {{\rm{Cycl}}}_{4}\left(\kappa ) condition. It follows from our result that for general metric spaces, the Cycl 4 ( κ ) {{\rm{Cycl}}}_{4}\left(\kappa ) condition implies the Cycl n ( κ ) {{\rm{Cycl}}}_{n}\left(\kappa ) conditions for all integers n ≥ 5 n\ge 5 .
分享
查看原文
Reshetnyak最大化定理的非测地线模拟
摘要:对于任意实数κ \kappa和任意整数n≥4 n \ge 4, Gromov (CAT(κ)-spaces: construction and concentration, Zap,引入Cycl n (κ) {{\rm{Cycl}}}_n{}\left (\kappa)条件。午餐。Sem。彼得堡。奥德尔。斯特克洛夫博士。(POMI) 280 (2001), (Geom)。i Topol. 7), 100-140, 299-300)是度量空间允许等距嵌入到CAT (κ) {\rm{CAT}}\left (\kappa)空间的必要条件。对于测地线度量空间,满足Cycl 4 (κ) {{\rm{Cycl}}}_4{}\left (\kappa)条件等价于CAT (κ) {\rm{CAT}}\left (\kappa)。本文证明了满足Cycl 4 (κ) {{\rm{Cycl}}}_4{}\left (\kappa)条件的(可能是非测地的)度量空间Reshetnyak最大化定理的一个类比。由我们的结果可知,对于一般度量空间,Cycl 4 (κ) {{\rm{Cycl}}}_4{}\left (\kappa)条件意味着对于所有整数n≥5 n {{\rm{Cycl}}}{}\ge 5, Cycl n (κ) _n\left (\kappa)条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信