{"title":"A non-geodesic analogue of Reshetnyak’s majorization theorem","authors":"T. Toyoda","doi":"10.1515/agms-2022-0151","DOIUrl":null,"url":null,"abstract":"Abstract For any real number κ \\kappa and any integer n ≥ 4 n\\ge 4 , the Cycl n ( κ ) {{\\rm{Cycl}}}_{n}\\left(\\kappa ) condition introduced by Gromov (CAT(κ)-spaces: construction and concentration, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280 (2001), (Geom. i Topol. 7), 100–140, 299–300) is a necessary condition for a metric space to admit an isometric embedding into a CAT ( κ ) {\\rm{CAT}}\\left(\\kappa ) space. For geodesic metric spaces, satisfying the Cycl 4 ( κ ) {{\\rm{Cycl}}}_{4}\\left(\\kappa ) condition is equivalent to being CAT ( κ ) {\\rm{CAT}}\\left(\\kappa ) . In this article, we prove an analogue of Reshetnyak’s majorization theorem for (possibly non-geodesic) metric spaces that satisfy the Cycl 4 ( κ ) {{\\rm{Cycl}}}_{4}\\left(\\kappa ) condition. It follows from our result that for general metric spaces, the Cycl 4 ( κ ) {{\\rm{Cycl}}}_{4}\\left(\\kappa ) condition implies the Cycl n ( κ ) {{\\rm{Cycl}}}_{n}\\left(\\kappa ) conditions for all integers n ≥ 5 n\\ge 5 .","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"11 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2022-0151","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract For any real number κ \kappa and any integer n ≥ 4 n\ge 4 , the Cycl n ( κ ) {{\rm{Cycl}}}_{n}\left(\kappa ) condition introduced by Gromov (CAT(κ)-spaces: construction and concentration, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280 (2001), (Geom. i Topol. 7), 100–140, 299–300) is a necessary condition for a metric space to admit an isometric embedding into a CAT ( κ ) {\rm{CAT}}\left(\kappa ) space. For geodesic metric spaces, satisfying the Cycl 4 ( κ ) {{\rm{Cycl}}}_{4}\left(\kappa ) condition is equivalent to being CAT ( κ ) {\rm{CAT}}\left(\kappa ) . In this article, we prove an analogue of Reshetnyak’s majorization theorem for (possibly non-geodesic) metric spaces that satisfy the Cycl 4 ( κ ) {{\rm{Cycl}}}_{4}\left(\kappa ) condition. It follows from our result that for general metric spaces, the Cycl 4 ( κ ) {{\rm{Cycl}}}_{4}\left(\kappa ) condition implies the Cycl n ( κ ) {{\rm{Cycl}}}_{n}\left(\kappa ) conditions for all integers n ≥ 5 n\ge 5 .
期刊介绍:
Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed.
AGMS is devoted to the publication of results on these and related topics:
Geometric inequalities in metric spaces,
Geometric measure theory and variational problems in metric spaces,
Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density,
Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds.
Geometric control theory,
Curvature in metric and length spaces,
Geometric group theory,
Harmonic Analysis. Potential theory,
Mass transportation problems,
Quasiconformal and quasiregular mappings. Quasiconformal geometry,
PDEs associated to analytic and geometric problems in metric spaces.