{"title":"Leveraging large eddy simulations to assess noise source imaging of a controlled supersonic jet","authors":"Chitrarth Prasad, S. Hromisin, P. Morris","doi":"10.1177/1475472X221107359","DOIUrl":null,"url":null,"abstract":"Noise source imaging based on phased array measurements is an essential tool in the aeroacoustic analysis of new nozzle designs, especially at full-scale. This investigation aims to assess the capability of a deconvolution-based beamforming technique to accurately estimate the changes in noise sources for model-scale heated military jets when fluid inserts are used for noise control. This goal is achieved by performing well-validated Large Eddy Simulations (LES) to complement the experimental measurements. The LES data is segregated into its hydrodynamic, acoustic and thermal components using Doak’s Momentum Potential Theory (MPT). The near-field MPT-derived components are subjected to Spectral Proper Orthogonal Decomposition (SPOD) to compare with the frequency-dependent noise source maps obtained directly from experiments. It is shown that fluid inserts alter the naturally occurring Kelvin-Helmholtz (K-H) instability in the jet shear layer, which leads to a change in the directivity of the noise radiated in the near-field. The upstream shift in the noise source distribution resulting from the modified K-H instability is accurately captured by the deconvolution-based source imaging technique using just the far-field measurements. These changes in source locations as a function of frequency are documented.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"21 1","pages":"438 - 456"},"PeriodicalIF":1.2000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1475472X221107359","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1
Abstract
Noise source imaging based on phased array measurements is an essential tool in the aeroacoustic analysis of new nozzle designs, especially at full-scale. This investigation aims to assess the capability of a deconvolution-based beamforming technique to accurately estimate the changes in noise sources for model-scale heated military jets when fluid inserts are used for noise control. This goal is achieved by performing well-validated Large Eddy Simulations (LES) to complement the experimental measurements. The LES data is segregated into its hydrodynamic, acoustic and thermal components using Doak’s Momentum Potential Theory (MPT). The near-field MPT-derived components are subjected to Spectral Proper Orthogonal Decomposition (SPOD) to compare with the frequency-dependent noise source maps obtained directly from experiments. It is shown that fluid inserts alter the naturally occurring Kelvin-Helmholtz (K-H) instability in the jet shear layer, which leads to a change in the directivity of the noise radiated in the near-field. The upstream shift in the noise source distribution resulting from the modified K-H instability is accurately captured by the deconvolution-based source imaging technique using just the far-field measurements. These changes in source locations as a function of frequency are documented.
期刊介绍:
International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published.
Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.