Regularity of the Local Time of Diffusions on the Positive Real Line with Reflection at Zero

Q2 Mathematics
Masafumi Hayashi
{"title":"Regularity of the Local Time of Diffusions on the Positive Real Line with Reflection at Zero","authors":"Masafumi Hayashi","doi":"10.31390/COSA.13.1.02","DOIUrl":null,"url":null,"abstract":"We study the joint law of (Xt(x), Lt(x)) where Xt(x) is the solution of a one dimensional stochastic differential equation on (0,+∞) with reflection at zero, and Lt(x) is its local time. In particular, we give some representation formula of the distribution of (Xt(x), Lt(x)), and we investigate the regularity of the joint density with respect to the local time argument under ellipticity and mild regularity conditions on coefficients of Xt(x).","PeriodicalId":53434,"journal":{"name":"Communications on Stochastic Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/COSA.13.1.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We study the joint law of (Xt(x), Lt(x)) where Xt(x) is the solution of a one dimensional stochastic differential equation on (0,+∞) with reflection at zero, and Lt(x) is its local time. In particular, we give some representation formula of the distribution of (Xt(x), Lt(x)), and we investigate the regularity of the joint density with respect to the local time argument under ellipticity and mild regularity conditions on coefficients of Xt(x).
零反射正实线上扩散局部时间的正则性
我们研究了(Xt(x),Lt(x))的联合律,其中,Xt(x)是一个在(0,+∞)上具有零反射的一维随机微分方程的解,而Lt(x)则是它的局部时间。特别地,我们给出了(Xt(x),Lt(x))分布的一些表示公式,并研究了在椭圆度和系数的温和正则性条件下,节理密度相对于局部时间自变量的正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications on Stochastic Analysis
Communications on Stochastic Analysis Mathematics-Statistics and Probability
CiteScore
2.40
自引率
0.00%
发文量
0
期刊介绍: The journal Communications on Stochastic Analysis (COSA) is published in four issues annually (March, June, September, December). It aims to present original research papers of high quality in stochastic analysis (both theory and applications) and emphasizes the global development of the scientific community. The journal welcomes articles of interdisciplinary nature. Expository articles of current interest will occasionally be published. COSAis indexed in Mathematical Reviews (MathSciNet), Zentralblatt für Mathematik, and SCOPUS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信