Automorphic descent for symplectic groups: The branching problems and L-functions

IF 1.7 1区 数学 Q1 MATHEMATICS
Baiying Liu, Bin Xu
{"title":"Automorphic descent for symplectic groups: The branching problems and L-functions","authors":"Baiying Liu, Bin Xu","doi":"10.1353/ajm.2023.a897497","DOIUrl":null,"url":null,"abstract":"abstract:We study certain automorphic descent constructions for symplectic groups, and obtain results related to branching problems of automorphic representations. As a byproduct of the construction, based on the knowledge of the global Vogan packets for ${\\rm Mp}_2(\\Bbb{A})$, we give a new approach to prove the result that for an automorphic cuspidal representation of ${\\rm GL}_2(\\Bbb{A})$ of symplectic type, if there exists a quadratic twist with positive root number, then there exist quadratic twists with non-zero central $L$-values.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"145 1","pages":"807 - 859"},"PeriodicalIF":1.7000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2023.a897497","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

abstract:We study certain automorphic descent constructions for symplectic groups, and obtain results related to branching problems of automorphic representations. As a byproduct of the construction, based on the knowledge of the global Vogan packets for ${\rm Mp}_2(\Bbb{A})$, we give a new approach to prove the result that for an automorphic cuspidal representation of ${\rm GL}_2(\Bbb{A})$ of symplectic type, if there exists a quadratic twist with positive root number, then there exist quadratic twists with non-zero central $L$-values.
辛群的自同构下降:分支问题与l -函数
研究了辛群的自同构下降结构,得到了一些与自同构表示的分支问题有关的结果。作为构造的副产物,我们基于${\rm Mp}_2(\Bbb{a})$的全局Vogan包的知识,给出了一个新的方法来证明对于辛型${\rm GL}_2(\Bbb{a})$的自同构倒形表示,如果存在根数为正的二次扭转,则存在中心$L$值为非零的二次扭转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
35
审稿时长
24 months
期刊介绍: The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信