Twisting of Graded Quantum Groups and Solutions to the Quantum Yang-Baxter Equation.

IF 0.4 3区 数学 Q4 MATHEMATICS
Transformation Groups Pub Date : 2024-01-01 Epub Date: 2022-12-01 DOI:10.1007/s00031-022-09779-9
Hongdi Huang, Van C Nguyen, Charlotte Ure, Kent B Vashaw, Padmini Veerapen, Xingting Wang
{"title":"Twisting of Graded Quantum Groups and Solutions to the Quantum Yang-Baxter Equation.","authors":"Hongdi Huang, Van C Nguyen, Charlotte Ure, Kent B Vashaw, Padmini Veerapen, Xingting Wang","doi":"10.1007/s00031-022-09779-9","DOIUrl":null,"url":null,"abstract":"<p><p>Let <i>H</i> be a Hopf algebra that is <math><mi>ℤ</mi></math> -graded as an algebra. We provide sufficient conditions for a 2-cocycle twist of <i>H</i> to be a Zhang twist of <i>H</i>. In particular, we introduce the notion of a twisting pair for <i>H</i> such that the Zhang twist of <i>H</i> by such a pair is a 2-cocycle twist. We use twisting pairs to describe twists of Manin's universal quantum groups associated with quadratic algebras and provide twisting of solutions to the quantum Yang-Baxter equation via the Faddeev-Reshetikhin-Takhtajan construction.</p>","PeriodicalId":49423,"journal":{"name":"Transformation Groups","volume":" ","pages":"1459-1500"},"PeriodicalIF":0.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11641468/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transformation Groups","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-022-09779-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let H be a Hopf algebra that is -graded as an algebra. We provide sufficient conditions for a 2-cocycle twist of H to be a Zhang twist of H. In particular, we introduce the notion of a twisting pair for H such that the Zhang twist of H by such a pair is a 2-cocycle twist. We use twisting pairs to describe twists of Manin's universal quantum groups associated with quadratic algebras and provide twisting of solutions to the quantum Yang-Baxter equation via the Faddeev-Reshetikhin-Takhtajan construction.

Abstract Image

分级量子群的扭曲与量子Yang-Baxter方程的解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transformation Groups
Transformation Groups 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
100
审稿时长
9 months
期刊介绍: Transformation Groups will only accept research articles containing new results, complete Proofs, and an abstract. Topics include: Lie groups and Lie algebras; Lie transformation groups and holomorphic transformation groups; Algebraic groups; Invariant theory; Geometry and topology of homogeneous spaces; Discrete subgroups of Lie groups; Quantum groups and enveloping algebras; Group aspects of conformal field theory; Kac-Moody groups and algebras; Lie supergroups and superalgebras.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信