Y. Troitskaya, A. Kandaurov, A. Zotova, E. Korsukova, D. Sergeev
{"title":"Statistical characteristics of droplets formed due to the “bag breakup” fragmentation event at the interface between water and high-speed air flow.","authors":"Y. Troitskaya, A. Kandaurov, A. Zotova, E. Korsukova, D. Sergeev","doi":"10.1175/jpo-d-23-0037.1","DOIUrl":null,"url":null,"abstract":"\nRecent studies indicate that the dominant mechanism for generating sprays in hurricane winds is “a bag breakup” fragmentation. This fragmentation process is typically characterized by inflation and consequent bursting of short-lived objects, referred to as ”bags” (sail-like pieces of water film surrounded by a rim). Both the number of spray droplets and their size distribution substantially affect the air-sea heat and momentum exchange. Due to a lack of experimental data, the early spray generation function (SGF) for the ”bag breakup” mechanism was based on the assumed similarity with resembling processes. Here we present experimental results for the case with a single isolated ”bag breakup” fragmentation event. These experiments revealed several differences from similar fragmentation events that control the droplet sizes, such as secondary disintegration of droplets in gaseous flows and bursting of bubbles. In contrast to the bubble bursting, the film thickness of the ”bag” canopy is not constant but is random with lognormal distribution. Additionally, its average value does not depend on the canopy radius but is determined by the wind speed. The lognormal size distribution of the canopy droplets is observed in conjunction with the established mechanism of liquid film fragmentation. The rim fragmentation results in two types of droplets, and their size distribution has been found to be lognormal distribution. The constructed SGF is verified by comparing it with experimental data from the literature. The perspectives of transferring the results from laboratory to field environment have also been discussed.","PeriodicalId":56115,"journal":{"name":"Journal of Physical Oceanography","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jpo-d-23-0037.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent studies indicate that the dominant mechanism for generating sprays in hurricane winds is “a bag breakup” fragmentation. This fragmentation process is typically characterized by inflation and consequent bursting of short-lived objects, referred to as ”bags” (sail-like pieces of water film surrounded by a rim). Both the number of spray droplets and their size distribution substantially affect the air-sea heat and momentum exchange. Due to a lack of experimental data, the early spray generation function (SGF) for the ”bag breakup” mechanism was based on the assumed similarity with resembling processes. Here we present experimental results for the case with a single isolated ”bag breakup” fragmentation event. These experiments revealed several differences from similar fragmentation events that control the droplet sizes, such as secondary disintegration of droplets in gaseous flows and bursting of bubbles. In contrast to the bubble bursting, the film thickness of the ”bag” canopy is not constant but is random with lognormal distribution. Additionally, its average value does not depend on the canopy radius but is determined by the wind speed. The lognormal size distribution of the canopy droplets is observed in conjunction with the established mechanism of liquid film fragmentation. The rim fragmentation results in two types of droplets, and their size distribution has been found to be lognormal distribution. The constructed SGF is verified by comparing it with experimental data from the literature. The perspectives of transferring the results from laboratory to field environment have also been discussed.
期刊介绍:
The Journal of Physical Oceanography (JPO) (ISSN: 0022-3670; eISSN: 1520-0485) publishes research related to the physics of the ocean and to processes operating at its boundaries. Observational, theoretical, and modeling studies are all welcome, especially those that focus on elucidating specific physical processes. Papers that investigate interactions with other components of the Earth system (e.g., ocean–atmosphere, physical–biological, and physical–chemical interactions) as well as studies of other fluid systems (e.g., lakes and laboratory tanks) are also invited, as long as their focus is on understanding the ocean or its role in the Earth system.