Marginal additive models for population‐averaged inference in longitudinal and cluster‐correlated data

Pub Date : 2023-08-10 DOI:10.1111/sjos.12681
Glen Mcgee, Alex Stringer
{"title":"Marginal additive models for population‐averaged inference in longitudinal and cluster‐correlated data","authors":"Glen Mcgee, Alex Stringer","doi":"10.1111/sjos.12681","DOIUrl":null,"url":null,"abstract":"We propose a novel marginal additive model (MAM) for modelling cluster‐correlated data with non‐linear population‐averaged associations. The proposed MAM is a unified framework for estimation and uncertainty quantification of a marginal mean model, combined with inference for between‐cluster variability and cluster‐specific prediction. We propose a fitting algorithm that enables efficient computation of standard errors and corrects for estimation of penalty terms. We demonstrate the proposed methods in simulations and in application to (i) a longitudinal study of beaver foraging behaviour, and (ii) a spatial analysis of Loaloa infection in West Africa.This article is protected by copyright. All rights reserved.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel marginal additive model (MAM) for modelling cluster‐correlated data with non‐linear population‐averaged associations. The proposed MAM is a unified framework for estimation and uncertainty quantification of a marginal mean model, combined with inference for between‐cluster variability and cluster‐specific prediction. We propose a fitting algorithm that enables efficient computation of standard errors and corrects for estimation of penalty terms. We demonstrate the proposed methods in simulations and in application to (i) a longitudinal study of beaver foraging behaviour, and (ii) a spatial analysis of Loaloa infection in West Africa.This article is protected by copyright. All rights reserved.
分享
查看原文
纵向和聚类相关数据中的群体平均推理的边际加性模型
我们提出了一种新的边际加性模型(MAM),用于建模具有非线性总体平均关联的聚类相关数据。所提出的MAM是边际均值模型的估计和不确定性量化的统一框架,结合了聚类间变异性和聚类特定预测的推断。我们提出了一种拟合算法,该算法能够有效地计算标准误差并校正惩罚项的估计。我们在模拟中展示了所提出的方法,并将其应用于(i)海狸觅食行为的纵向研究,以及(ii)西非泥鳅感染的空间分析。本文受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信