Counting and boundary limit theorems for representations of Gromov‐hyperbolic groups

IF 1.5 1区 数学 Q1 MATHEMATICS
S. Cantrell, Cagri Sert
{"title":"Counting and boundary limit theorems for representations of Gromov‐hyperbolic groups","authors":"S. Cantrell, Cagri Sert","doi":"10.1112/plms.12550","DOIUrl":null,"url":null,"abstract":"Given a Gromov‐hyperbolic group G$G$ endowed with a finite symmetric generating set, we study the statistics of counting measures on the spheres of the associated Cayley graph under linear representations of G$G$ . More generally, we obtain a weak law of large numbers for subadditive functions, echoing the classical Fekete lemma. For strongly irreducible and proximal representations, we prove a counting central limit theorem with a Berry–Esseen type error rate and exponential large deviation estimates. Moreover, in the same setting, we show convergence of interpolated normalized matrix norms along geodesic rays to Brownian motion and a functional law of iterated logarithm, paralleling the analogous results in the theory of random matrix products. Our counting large deviation estimates address a question of Kaimanovich–Kapovich–Schupp. In most cases, our counting limit theorems will be obtained from stronger almost sure limit laws for Patterson–Sullivan measures on the boundary of the group.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12550","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Given a Gromov‐hyperbolic group G$G$ endowed with a finite symmetric generating set, we study the statistics of counting measures on the spheres of the associated Cayley graph under linear representations of G$G$ . More generally, we obtain a weak law of large numbers for subadditive functions, echoing the classical Fekete lemma. For strongly irreducible and proximal representations, we prove a counting central limit theorem with a Berry–Esseen type error rate and exponential large deviation estimates. Moreover, in the same setting, we show convergence of interpolated normalized matrix norms along geodesic rays to Brownian motion and a functional law of iterated logarithm, paralleling the analogous results in the theory of random matrix products. Our counting large deviation estimates address a question of Kaimanovich–Kapovich–Schupp. In most cases, our counting limit theorems will be obtained from stronger almost sure limit laws for Patterson–Sullivan measures on the boundary of the group.
Gromov -双曲群表示的计数和边界极限定理
给定一个具有有限对称生成集的Gromov双曲群G$G$,我们研究了G$G$线性表示下相关Cayley图球面上计数测度的统计量。更普遍地说,我们得到了次加性函数的弱大数定律,这与经典的Fekete引理相呼应。对于强不可约和近似表示,我们证明了具有Berry–Esseen型误差率和指数大偏差估计的计数中心极限定理。此外,在同样的情况下,我们展示了插值归一化矩阵范数沿着测地线到布朗运动的收敛性和重对数的函数律,与随机矩阵乘积理论中的类似结果平行。我们计算的大偏差估计解决了Kaimanovich–Kapovich–Schupp的问题。在大多数情况下,我们的计数极限定理将从群边界上的Patterson–Sullivan测度的更强几乎肯定极限律中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信