{"title":"Copula multivariate GARCH model with constrained Hamiltonian Monte Carlo","authors":"Martin Burda, Louis Bélisle","doi":"10.1515/demo-2019-0006","DOIUrl":null,"url":null,"abstract":"Abstract The Copula Multivariate GARCH (CMGARCH) model is based on a dynamic copula function with time-varying parameters. It is particularly suited for modelling dynamic dependence of non-elliptically distributed financial returns series. The model allows for capturing more flexible dependence patterns than a multivariate GARCH model and also generalizes static copula dependence models. Nonetheless, the model is subject to a number of parameter constraints that ensure positivity of variances and covariance stationarity of the modeled stochastic processes. As such, the resulting distribution of parameters of interest is highly irregular, characterized by skewness, asymmetry, and truncation, hindering the applicability and accuracy of asymptotic inference. In this paper, we propose Bayesian analysis of the CMGARCH model based on Constrained Hamiltonian Monte Carlo (CHMC), which has been shown in other contexts to yield efficient inference on complicated constrained dependence structures. In the CMGARCH context, we contrast CHMC with traditional random-walk sampling used in the previous literature and highlight the benefits of CHMC for applied researchers. We estimate the posterior mean, median and Bayesian confidence intervals for the coefficients of tail dependence. The analysis is performed in an application to a recent portfolio of S&P500 financial asset returns.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"7 1","pages":"133 - 149"},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2019-0006","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2019-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract The Copula Multivariate GARCH (CMGARCH) model is based on a dynamic copula function with time-varying parameters. It is particularly suited for modelling dynamic dependence of non-elliptically distributed financial returns series. The model allows for capturing more flexible dependence patterns than a multivariate GARCH model and also generalizes static copula dependence models. Nonetheless, the model is subject to a number of parameter constraints that ensure positivity of variances and covariance stationarity of the modeled stochastic processes. As such, the resulting distribution of parameters of interest is highly irregular, characterized by skewness, asymmetry, and truncation, hindering the applicability and accuracy of asymptotic inference. In this paper, we propose Bayesian analysis of the CMGARCH model based on Constrained Hamiltonian Monte Carlo (CHMC), which has been shown in other contexts to yield efficient inference on complicated constrained dependence structures. In the CMGARCH context, we contrast CHMC with traditional random-walk sampling used in the previous literature and highlight the benefits of CHMC for applied researchers. We estimate the posterior mean, median and Bayesian confidence intervals for the coefficients of tail dependence. The analysis is performed in an application to a recent portfolio of S&P500 financial asset returns.
期刊介绍:
The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to): -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations