{"title":"Stable minimal hypersurfaces in ℝ^N+1+ℓ with singular set an arbitrary closed K⊂{0}×ℝ^ℓ","authors":"L. Simon","doi":"10.4007/annals.2023.197.3.4","DOIUrl":null,"url":null,"abstract":"With respect to a C ∞ metric which is close to the standard Euclidean metric on R N + 1 + ℓ , where N ≥ 7 and ℓ ≥ 1 are given, we construct a class of embedded ( N + ℓ )-dimensional hypersurfaces (without boundary) which are minimal and strictly stable, and which have singular set equal to an arbitrary preassigned closed subset K ⊂ { 0 } × R ℓ . Thus the question is settled, with a strong affirmative, as to whether there can be “gaps” or even fractional dimensional parts in the singular set. Such questions, for both stable and unstable minimal submanifolds, remain open in all dimensions in the case of real analytic metrics and in particular for the standard Euclidean metric. The construction used here involves the analysis of solutions u of the Symmetric Minimal Surface Equation on domains Ω ⊂ R n whose symmetric graphs (i.e. { ( x , ξ ) ∈ Ω × R m : | ξ | = u ( x ) } ) lie on one side of a cylindrical minimal cone, including in particular a Liouville type theorem for complete solutions (i.e. the case Ω = R n ).","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2023.197.3.4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11
Abstract
With respect to a C ∞ metric which is close to the standard Euclidean metric on R N + 1 + ℓ , where N ≥ 7 and ℓ ≥ 1 are given, we construct a class of embedded ( N + ℓ )-dimensional hypersurfaces (without boundary) which are minimal and strictly stable, and which have singular set equal to an arbitrary preassigned closed subset K ⊂ { 0 } × R ℓ . Thus the question is settled, with a strong affirmative, as to whether there can be “gaps” or even fractional dimensional parts in the singular set. Such questions, for both stable and unstable minimal submanifolds, remain open in all dimensions in the case of real analytic metrics and in particular for the standard Euclidean metric. The construction used here involves the analysis of solutions u of the Symmetric Minimal Surface Equation on domains Ω ⊂ R n whose symmetric graphs (i.e. { ( x , ξ ) ∈ Ω × R m : | ξ | = u ( x ) } ) lie on one side of a cylindrical minimal cone, including in particular a Liouville type theorem for complete solutions (i.e. the case Ω = R n ).
期刊介绍:
The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.