{"title":"Expansion for a Fundamental Solution of Laplace's Equation in Flat-Ring Cyclide Coordinates","authors":"L. Bi, H. Cohl, H. Volkmer","doi":"10.3842/SIGMA.2022.041","DOIUrl":null,"url":null,"abstract":"We derive an expansion for the fundamental solution of Laplace's equation in flat-ring coordinates in three-dimensional Euclidean space. This expansion is a double series of products of functions that are harmonic in the interior and exterior of ''flat rings''. These internal and external flat-ring harmonic functions are expressed in terms of simply-periodic Lamé functions. In a limiting case we obtain the expansion of the fundamental solution in toroidal coordinates.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3842/SIGMA.2022.041","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
We derive an expansion for the fundamental solution of Laplace's equation in flat-ring coordinates in three-dimensional Euclidean space. This expansion is a double series of products of functions that are harmonic in the interior and exterior of ''flat rings''. These internal and external flat-ring harmonic functions are expressed in terms of simply-periodic Lamé functions. In a limiting case we obtain the expansion of the fundamental solution in toroidal coordinates.
期刊介绍:
Scope
Geometrical methods in mathematical physics
Lie theory and differential equations
Classical and quantum integrable systems
Algebraic methods in dynamical systems and chaos
Exactly and quasi-exactly solvable models
Lie groups and algebras, representation theory
Orthogonal polynomials and special functions
Integrable probability and stochastic processes
Quantum algebras, quantum groups and their representations
Symplectic, Poisson and noncommutative geometry
Algebraic geometry and its applications
Quantum field theories and string/gauge theories
Statistical physics and condensed matter physics
Quantum gravity and cosmology.