Expansion for a Fundamental Solution of Laplace's Equation in Flat-Ring Cyclide Coordinates

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
L. Bi, H. Cohl, H. Volkmer
{"title":"Expansion for a Fundamental Solution of Laplace's Equation in Flat-Ring Cyclide Coordinates","authors":"L. Bi, H. Cohl, H. Volkmer","doi":"10.3842/SIGMA.2022.041","DOIUrl":null,"url":null,"abstract":"We derive an expansion for the fundamental solution of Laplace's equation in flat-ring coordinates in three-dimensional Euclidean space. This expansion is a double series of products of functions that are harmonic in the interior and exterior of ''flat rings''. These internal and external flat-ring harmonic functions are expressed in terms of simply-periodic Lamé functions. In a limiting case we obtain the expansion of the fundamental solution in toroidal coordinates.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3842/SIGMA.2022.041","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We derive an expansion for the fundamental solution of Laplace's equation in flat-ring coordinates in three-dimensional Euclidean space. This expansion is a double series of products of functions that are harmonic in the interior and exterior of ''flat rings''. These internal and external flat-ring harmonic functions are expressed in terms of simply-periodic Lamé functions. In a limiting case we obtain the expansion of the fundamental solution in toroidal coordinates.
拉普拉斯方程的一个基本解在平环坐标系中的展开式
我们导出了拉普拉斯方程在三维欧氏空间的平环坐标系中的基本解的展开式。这个扩展是“平面环”内部和外部和谐的功能的双系列产品。这些内部和外部平环调和函数用简单的周期Lamé函数表示。在极限情况下,我们得到了基本解在环面坐标系中的展开式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信