Another Look at Geodetic Hop Domination in a Graph

IF 1 Q1 MATHEMATICS
C. J. Saromines, Sergio R. Canoy, Jr.
{"title":"Another Look at Geodetic Hop Domination in a Graph","authors":"C. J. Saromines, Sergio R. Canoy, Jr.","doi":"10.29020/nybg.ejpam.v16i3.4810","DOIUrl":null,"url":null,"abstract":"Let $G$ be an undirected graph with vertex and edge sets $V(G)$ and $E(G)$, respectively. A subset $S$ of vertices of $G$ is a geodetic hop dominating set if it is both a geodetic and a hop dominating set. The geodetic hop domination number of $G$ is the minimum cardinality among all geodetic hop dominating sets in $G$. Geodetic hop dominating sets in a graph resulting from the join of two graphs have been characterized. These characterizations have been used to determine the geodetic hop domination number of the graphs considered. A realization result involving the hop domination number and geodetic hop domination number is also obtained.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i3.4810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $G$ be an undirected graph with vertex and edge sets $V(G)$ and $E(G)$, respectively. A subset $S$ of vertices of $G$ is a geodetic hop dominating set if it is both a geodetic and a hop dominating set. The geodetic hop domination number of $G$ is the minimum cardinality among all geodetic hop dominating sets in $G$. Geodetic hop dominating sets in a graph resulting from the join of two graphs have been characterized. These characterizations have been used to determine the geodetic hop domination number of the graphs considered. A realization result involving the hop domination number and geodetic hop domination number is also obtained.
图中测地跳支配的另一种看法
设$G$是一个无向图,其顶点集$V(G)$和边集$E(G)$分别具有。$G$的顶点子集$S$是一个测地跳控制集,如果它既是测地跳控制集又是跳控制集。$G$的测地跳支配数是$G$中所有测地跳支配集的最小基数。本文刻画了由两个图的连接而产生的图的测地跳控制集。这些表征已被用来确定所考虑的图的测地跳支配数。给出了包含跳数控制数和测地跳数控制数的实现结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信