Hiding Sensitive High Utility and Frequent Itemsets Based on Constrained Intersection Lattice

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Huynh Trieu Vy, Le Quoc Hai, Nguyen Thanh Long, Trương Ngọc Châu, Le Quoc Hieu
{"title":"Hiding Sensitive High Utility and Frequent Itemsets Based on Constrained Intersection Lattice","authors":"Huynh Trieu Vy, Le Quoc Hai, Nguyen Thanh Long, Trương Ngọc Châu, Le Quoc Hieu","doi":"10.2478/cait-2022-0001","DOIUrl":null,"url":null,"abstract":"Abstract Hiding high utility and frequent itemset is the method used to preserve sensitive knowledge from being revealed by pattern mining process. Its goal is to remove sensitive high utility and frequent itemsets from a database before sharing it for data mining purposes while minimizing the side effects. The current methods succeed in the hiding goal but they cause high side effects. This paper proposes a novel algorithm, named HSUFIBL, that applies a heuristic for finding victim item based on the constrained intersection lattice theory. This algorithm specifies exactly the condition that allows the application of utility reduction or support reduction method, the victim item, and the victim transaction for the hiding process so that the process needs the fewest data modifications and gives the lowest number of lost non-sensitive itemsets. The experimental results indicate that the HSUFIBL algorithm achieves better performance than previous works in minimizing the side effect.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":"22 1","pages":"3 - 23"},"PeriodicalIF":1.2000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2022-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Hiding high utility and frequent itemset is the method used to preserve sensitive knowledge from being revealed by pattern mining process. Its goal is to remove sensitive high utility and frequent itemsets from a database before sharing it for data mining purposes while minimizing the side effects. The current methods succeed in the hiding goal but they cause high side effects. This paper proposes a novel algorithm, named HSUFIBL, that applies a heuristic for finding victim item based on the constrained intersection lattice theory. This algorithm specifies exactly the condition that allows the application of utility reduction or support reduction method, the victim item, and the victim transaction for the hiding process so that the process needs the fewest data modifications and gives the lowest number of lost non-sensitive itemsets. The experimental results indicate that the HSUFIBL algorithm achieves better performance than previous works in minimizing the side effect.
基于约束交集格的敏感高效用频繁项集隐藏
摘要隐藏高实用性和频繁项集是模式挖掘过程中用来保护敏感知识不被泄露的方法。其目标是在出于数据挖掘目的共享数据库之前,从数据库中删除敏感的高实用性和频繁的项目集,同时将副作用降至最低。目前的方法成功地实现了隐藏目标,但它们会造成很高的副作用。本文提出了一种新的算法,名为HSUFIBL,该算法基于约束交集格理论,应用启发式方法来寻找受害者项。该算法准确地指定了允许应用效用减少或支持减少方法的条件、隐藏过程的受害者项目和受害者事务,以便该过程需要最少的数据修改,并提供最少数量的丢失非敏感项目集。实验结果表明,HSUFIBL算法在最小化副作用方面取得了比以往更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cybernetics and Information Technologies
Cybernetics and Information Technologies COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.20
自引率
25.00%
发文量
35
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信