Effects of Data Standardization on Hyperparameter Optimization with the Grid Search Algorithm Based on Deep Learning: A Case Study of Electric Load Forecasting

Q3 Engineering
T. Ngoc, L. Dai, Lam Binh Minh
{"title":"Effects of Data Standardization on Hyperparameter Optimization with the Grid Search Algorithm Based on Deep Learning: A Case Study of Electric Load Forecasting","authors":"T. Ngoc, L. Dai, Lam Binh Minh","doi":"10.46604/aiti.2022.9227","DOIUrl":null,"url":null,"abstract":"This study investigates data standardization methods based on the grid search (GS) algorithm for energy load forecasting, including zero-mean, min-max, max, decimal, sigmoid, softmax, median, and robust, to determine the hyperparameters of deep learning (DL) models. The considered DL models are the convolutional neural network (CNN) and long short-term memory network (LSTMN). The procedure is made over (i) setting the configuration for CNN and LSTMN, (ii) establishing the hyperparameter values of CNN and LSTMN models based on epoch, batch, optimizer, dropout, filters, and kernel, (iii) using eight data standardization methods to standardize the input data, and (iv) using the GS algorithm to search the optimal hyperparameters based on the mean absolute error (MAE) and mean absolute percent error (MAPE) indexes. The effectiveness of the proposed method is verified on the power load data of the Australian state of Queensland and Vietnamese Ho Chi Minh city. The simulation results show that the proposed data standardization methods are appropriate, except for the zero-mean and min-max methods.","PeriodicalId":52314,"journal":{"name":"Advances in Technology Innovation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/aiti.2022.9227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

This study investigates data standardization methods based on the grid search (GS) algorithm for energy load forecasting, including zero-mean, min-max, max, decimal, sigmoid, softmax, median, and robust, to determine the hyperparameters of deep learning (DL) models. The considered DL models are the convolutional neural network (CNN) and long short-term memory network (LSTMN). The procedure is made over (i) setting the configuration for CNN and LSTMN, (ii) establishing the hyperparameter values of CNN and LSTMN models based on epoch, batch, optimizer, dropout, filters, and kernel, (iii) using eight data standardization methods to standardize the input data, and (iv) using the GS algorithm to search the optimal hyperparameters based on the mean absolute error (MAE) and mean absolute percent error (MAPE) indexes. The effectiveness of the proposed method is verified on the power load data of the Australian state of Queensland and Vietnamese Ho Chi Minh city. The simulation results show that the proposed data standardization methods are appropriate, except for the zero-mean and min-max methods.
数据标准化对基于深度学习的网格搜索算法超参数优化的影响——以电力负荷预测为例
本文研究了基于网格搜索(GS)算法的能源负荷预测数据标准化方法,包括零均值、最小最大值、最大值、十进制、sigmoid、softmax、中位数和鲁棒性,以确定深度学习(DL)模型的超参数。考虑的深度学习模型是卷积神经网络(CNN)和长短期记忆网络(LSTMN)。该过程包括(i)设置CNN和LSTMN的配置,(ii)基于epoch、batch、optimizer、dropout、filters和kernel建立CNN和LSTMN模型的超参数值,(iii)使用8种数据标准化方法对输入数据进行标准化,以及(iv)使用GS算法基于平均绝对误差(MAE)和平均绝对百分比误差(MAPE)指标搜索最优超参数。通过澳大利亚昆士兰州和越南胡志明市的电力负荷数据验证了该方法的有效性。仿真结果表明,除了零均值和最小最大值方法外,所提出的数据标准化方法是合适的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Technology Innovation
Advances in Technology Innovation Energy-Energy Engineering and Power Technology
CiteScore
1.90
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信