Interpretable deep learning to uncover the molecular binding patterns determining TCR–epitope interaction predictions

Ceder Dens, Wout Bittremieux, Fabio Affaticati, Kris Laukens, Pieter Meysman
{"title":"Interpretable deep learning to uncover the molecular binding patterns determining TCR–epitope interaction predictions","authors":"Ceder Dens,&nbsp;Wout Bittremieux,&nbsp;Fabio Affaticati,&nbsp;Kris Laukens,&nbsp;Pieter Meysman","doi":"10.1016/j.immuno.2023.100027","DOIUrl":null,"url":null,"abstract":"<div><p>The recognition of an epitope by a T-cell receptor (TCR) is crucial for eliminating pathogens and establishing immunological memory. Prediction of the binding of any TCR–epitope pair is still a challenging task, especially for novel epitopes, because the underlying patterns are largely unknown to domain experts and machine learning models. To achieve a deeper understanding of TCR–epitope interactions, we have used interpretable deep learning techniques to gain insights into the performance of TCR–epitope binding machine learning models. We demonstrate how interpretable AI techniques can be linked to the three-dimensional structure of molecules to offer novel insights into the factors that determine TCR affinity on a molecular level. Additionally, our results show the importance of using interpretability techniques to verify the predictions of machine learning models for challenging molecular biology problems where small hard-to-detect problems can accumulate to inaccurate results.</p></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"11 ","pages":"Article 100027"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunoinformatics (Amsterdam, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667119023000071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The recognition of an epitope by a T-cell receptor (TCR) is crucial for eliminating pathogens and establishing immunological memory. Prediction of the binding of any TCR–epitope pair is still a challenging task, especially for novel epitopes, because the underlying patterns are largely unknown to domain experts and machine learning models. To achieve a deeper understanding of TCR–epitope interactions, we have used interpretable deep learning techniques to gain insights into the performance of TCR–epitope binding machine learning models. We demonstrate how interpretable AI techniques can be linked to the three-dimensional structure of molecules to offer novel insights into the factors that determine TCR affinity on a molecular level. Additionally, our results show the importance of using interpretability techniques to verify the predictions of machine learning models for challenging molecular biology problems where small hard-to-detect problems can accumulate to inaccurate results.

Abstract Image

可解释的深度学习揭示确定tcr -表位相互作用预测的分子结合模式
t细胞受体(TCR)对表位的识别对于消除病原体和建立免疫记忆至关重要。预测任何tcr -表位对的结合仍然是一项具有挑战性的任务,特别是对于新的表位,因为潜在的模式在很大程度上是未知的领域专家和机器学习模型。为了更深入地了解tcr -表位相互作用,我们使用可解释的深度学习技术来深入了解tcr -表位结合机器学习模型的性能。我们展示了可解释的人工智能技术如何与分子的三维结构相关联,从而为在分子水平上决定TCR亲和力的因素提供了新的见解。此外,我们的研究结果显示了使用可解释性技术来验证机器学习模型对具有挑战性的分子生物学问题的预测的重要性,在这些问题中,难以检测的小问题可能累积到不准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Immunoinformatics (Amsterdam, Netherlands)
Immunoinformatics (Amsterdam, Netherlands) Immunology, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
60 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信