{"title":"Strong cospectrality and twin vertices in weighted graphs","authors":"Hermie Monterde","doi":"10.13001/ela.2022.6721","DOIUrl":null,"url":null,"abstract":"We explore algebraic and spectral properties of weighted graphs containing twin vertices that are useful in quantum state transfer. We extend the notion of adjacency strong cospectrality to Hermitian matrices, with focus on the generalized adjacency matrix and the generalized normalized adjacency matrix. We then determine necessary and sufficient conditions such that a pair of twin vertices in a weighted graph exhibits strong cospectrality with respect to the above-mentioned matrices. We also determine when strong cospectrality is preserved under Cartesian and direct products of graphs. Moreover, we generalize known results about equitable and almost equitable partitions and use these to determine which joins of the form $X\\vee H$, where $X$ is either the complete or empty graph, exhibit strong cospectrality.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.6721","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5
Abstract
We explore algebraic and spectral properties of weighted graphs containing twin vertices that are useful in quantum state transfer. We extend the notion of adjacency strong cospectrality to Hermitian matrices, with focus on the generalized adjacency matrix and the generalized normalized adjacency matrix. We then determine necessary and sufficient conditions such that a pair of twin vertices in a weighted graph exhibits strong cospectrality with respect to the above-mentioned matrices. We also determine when strong cospectrality is preserved under Cartesian and direct products of graphs. Moreover, we generalize known results about equitable and almost equitable partitions and use these to determine which joins of the form $X\vee H$, where $X$ is either the complete or empty graph, exhibit strong cospectrality.
期刊介绍:
The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.