Conditional Dependence in Longitudinal Data Analysis

IF 0.1 Q4 STATISTICS & PROBABILITY
M. Torabi, A. R. Leon
{"title":"Conditional Dependence in Longitudinal Data Analysis","authors":"M. Torabi, A. R. Leon","doi":"10.52547/jirss.20.1.347","DOIUrl":null,"url":null,"abstract":". Mixed models are widely used to analyze longitudinal data. In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random e ff ects. Although conventional Gaussian LMMs are able to incorporate conditional dependence of longitudinal observations, they require that the data are, or some transformation of them is, Gaussian, a serious limitation in a wide variety of practical applications. Here, we introduce the class of Gaussian copula conditional regression models (GCCRMs) as flexible alternatives to conventional LMMs and GLMMs. One advantage of GCCRMs is that they extend conventional LMMs and GLMMs in a way that reduces to conventional LMMs, when the data are Gaussian, and to conventional GLMMs, when conditional independence is assumed. We implement likelihood analysis of GCCRMs using existing software and statistical packages and evaluate the finite-sample performance of maximum likelihood estimates for GCCRM empirically via simulations vis-à-vis the ‘naive’ likelihood analysis that incorrectly assumes conditionally independent longitudinal data. Our results show that the ‘naive’ analysis yields estimates with possibly severe bias and incorrect standard errors, leading to misleading inferences. We use bolus count data on patients’ controlled analgesia comparing dosing regimes and data on serum creatinine from a renal graft study to illustrate the applications of GCCRMs.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/jirss.20.1.347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

. Mixed models are widely used to analyze longitudinal data. In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random e ff ects. Although conventional Gaussian LMMs are able to incorporate conditional dependence of longitudinal observations, they require that the data are, or some transformation of them is, Gaussian, a serious limitation in a wide variety of practical applications. Here, we introduce the class of Gaussian copula conditional regression models (GCCRMs) as flexible alternatives to conventional LMMs and GLMMs. One advantage of GCCRMs is that they extend conventional LMMs and GLMMs in a way that reduces to conventional LMMs, when the data are Gaussian, and to conventional GLMMs, when conditional independence is assumed. We implement likelihood analysis of GCCRMs using existing software and statistical packages and evaluate the finite-sample performance of maximum likelihood estimates for GCCRM empirically via simulations vis-à-vis the ‘naive’ likelihood analysis that incorrectly assumes conditionally independent longitudinal data. Our results show that the ‘naive’ analysis yields estimates with possibly severe bias and incorrect standard errors, leading to misleading inferences. We use bolus count data on patients’ controlled analgesia comparing dosing regimes and data on serum creatinine from a renal graft study to illustrate the applications of GCCRMs.
纵向数据分析中的条件依赖性
混合模型被广泛用于分析纵向数据。在线性混合模型(LMM)和广义LMM(GLMM)的传统公式中,在涉及纵向非高斯数据的环境中,一个通常不可或缺的假设是,在给定受试者特定随机效应的情况下,受试者的纵向观察是有条件独立的。尽管传统的高斯LMM能够结合纵向观测的条件依赖性,但它们要求数据是高斯的,或者它们的某些转换是高斯的——这在各种实际应用中是一个严重的限制。在这里,我们介绍了一类高斯copula条件回归模型(GCCRM),作为传统LMM和GLMM的灵活替代方案。GCCRM的一个优点是,当数据是高斯数据时,它们扩展了传统的LMM和GLMM,当假设条件独立性时,它们减少到传统的LMM。我们使用现有软件和统计包对GCCRM进行似然分析,并通过模拟对错误假设条件独立纵向数据的“幼稚”似然分析,实证评估GCCRM最大似然估计的有限样本性能。我们的结果表明,“天真”分析得出的估计可能存在严重偏差和不正确的标准误差,从而导致误导性推断。我们使用患者控制镇痛的推注计数数据,比较给药方案和肾移植研究的血清肌酐数据,以说明GCCRM的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信