An investigation into the effect of cross-ply on energy storage and vibration characteristics of carbon fiber lattice sandwich structure bionic prosthetic foot

IF 1.9 4区 材料科学 Q3 Materials Science
Meijiao Jiang, Junxia Zhang
{"title":"An investigation into the effect of cross-ply on energy storage and vibration characteristics of carbon fiber lattice sandwich structure bionic prosthetic foot","authors":"Meijiao Jiang, Junxia Zhang","doi":"10.1515/secm-2022-0206","DOIUrl":null,"url":null,"abstract":"Abstract Made a pioneering attempt to use the lattice sandwich structure in prosthetic foot design and pioneered the study for the lay-up design of the prosthetic foot. An innovative carbon fiber bionic prosthetic foot was designed using a sandwich structure. The effect of cross-ply on the prosthetic foot’s energy storage properties and vibration characteristics was investigated using the lattice sandwich structure prosthetic foot. The bionic prosthetic foot’s finite element model was constructed under normal working conditions according to international standards. The results indicate that the storage of strain energy increases with an increase in cross-ply under heel-strict working conditions. Under the toe-off condition, the strain energy distribution increases with the increase in cross-ply. The cross-ply number influences the mode of displacement of the bionic foot. The natural frequencies of the bionic foot increase with the increase in the cross-ply.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/secm-2022-0206","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Made a pioneering attempt to use the lattice sandwich structure in prosthetic foot design and pioneered the study for the lay-up design of the prosthetic foot. An innovative carbon fiber bionic prosthetic foot was designed using a sandwich structure. The effect of cross-ply on the prosthetic foot’s energy storage properties and vibration characteristics was investigated using the lattice sandwich structure prosthetic foot. The bionic prosthetic foot’s finite element model was constructed under normal working conditions according to international standards. The results indicate that the storage of strain energy increases with an increase in cross-ply under heel-strict working conditions. Under the toe-off condition, the strain energy distribution increases with the increase in cross-ply. The cross-ply number influences the mode of displacement of the bionic foot. The natural frequencies of the bionic foot increase with the increase in the cross-ply.
交叉铺层对碳纤维网格夹层结构仿生假足储能和振动特性影响的研究
摘要在假足设计中首次尝试采用格构夹层结构,并开创了假足叠层设计研究的先河。采用三明治结构设计了一种创新的碳纤维仿生假足。采用网格夹层结构义足,研究了交叉层对义足储能性能和振动特性的影响。根据国际标准,在正常工作条件下建立了仿生假足的有限元模型。结果表明,在跟部严格的工作条件下,应变能的储存量随着交叠层的增加而增加。在断趾条件下,应变能分布随着交叠层的增加而增加。交叉层数影响仿生足的位移方式。仿生足的固有频率随着交叉层的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science and Engineering of Composite Materials
Science and Engineering of Composite Materials 工程技术-材料科学:复合
CiteScore
3.10
自引率
5.30%
发文量
0
审稿时长
4 months
期刊介绍: Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信