A Cartesian diagram of Rapoport–Zink towers over universal covers of $p$-divisible groups

IF 1.2 3区 数学 Q1 MATHEMATICS
Mohammad Hadi Hedayatzadeh
{"title":"A Cartesian diagram of Rapoport–Zink towers over universal covers of $p$-divisible groups","authors":"Mohammad Hadi Hedayatzadeh","doi":"10.4310/cntp.2020.v14.n4.a1","DOIUrl":null,"url":null,"abstract":"In their paper Scholze and Weinstein show that a certain diagram of perfectoid spaces is Cartesian. In this paper, we generalize their result. This generalization will be used in a forthcoming paper of ours to compute certain non-trivial $\\ell$-adic etale cohomology classes appearing in the the generic fiber of Lubin-Tate and Rapoprt-Zink towers. We also study the behavior of the vector bundle functor on the fundamental curve in $p$-adic Hodge theory, defined by Fargues-Fontaine, under multilinear morphisms.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2020.v14.n4.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In their paper Scholze and Weinstein show that a certain diagram of perfectoid spaces is Cartesian. In this paper, we generalize their result. This generalization will be used in a forthcoming paper of ours to compute certain non-trivial $\ell$-adic etale cohomology classes appearing in the the generic fiber of Lubin-Tate and Rapoprt-Zink towers. We also study the behavior of the vector bundle functor on the fundamental curve in $p$-adic Hodge theory, defined by Fargues-Fontaine, under multilinear morphisms.
Rapoport-Zink的笛卡尔图在$p$可分群的全称覆盖上高塔
Scholze和Weinstein在他们的论文中证明了完备空间的某个图是笛卡尔的。在本文中,我们推广了他们的结果。这一推广将在我们即将发表的一篇论文中用于计算出现在Lubin Tate和Rapoprt Zink塔的一般纤维中的某些非平凡$\ell$-adic etale上同调类。我们还研究了Fargues-Fontaine定义的$p$adic-Hodge理论中向量丛函子在多线性态射下在基曲线上的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信