Material Classification with a Transfer Learning based Deep Model on an imbalanced Dataset using an epochal Deming-Cycle-Methodology

Q4 Computer Science
Marco Klaiber
{"title":"Material Classification with a Transfer Learning based Deep Model on an imbalanced Dataset using an epochal Deming-Cycle-Methodology","authors":"Marco Klaiber","doi":"10.5565/rev/elcvia.1517","DOIUrl":null,"url":null,"abstract":"This work demonstrates that a transfer learning-based deep learning model can perform unambiguous classification based on microscopic images of material surfaces with a high degree of accuracy. A transfer learning-enhanced deep learning model was successfully used in combination with an innovative approach for eliminating noisy data based on automatic selection using pixel sum values, which was refined over different epochs to develop and evaluate an effective model for classifying microscopy images. The deep learning model evaluated achieved 91.54% accuracy with the dataset used and set new standards with the method applied. In addition, care was taken to achieve a balance between accuracy and robustness with respect to the model. Based on this scientific report, a means of identifying microscopy images could evolve to support material identification, suggesting a potential application in the domain of materials science and engineering. ","PeriodicalId":38711,"journal":{"name":"Electronic Letters on Computer Vision and Image Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Letters on Computer Vision and Image Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5565/rev/elcvia.1517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

This work demonstrates that a transfer learning-based deep learning model can perform unambiguous classification based on microscopic images of material surfaces with a high degree of accuracy. A transfer learning-enhanced deep learning model was successfully used in combination with an innovative approach for eliminating noisy data based on automatic selection using pixel sum values, which was refined over different epochs to develop and evaluate an effective model for classifying microscopy images. The deep learning model evaluated achieved 91.54% accuracy with the dataset used and set new standards with the method applied. In addition, care was taken to achieve a balance between accuracy and robustness with respect to the model. Based on this scientific report, a means of identifying microscopy images could evolve to support material identification, suggesting a potential application in the domain of materials science and engineering. 
使用划时代戴明循环方法在不平衡数据集上使用基于迁移学习的深度模型进行材料分类
这项工作表明,基于迁移学习的深度学习模型可以基于材料表面的微观图像进行高精度的明确分类。将迁移学习增强的深度学习模型与基于像素和值自动选择的消除噪声数据的创新方法相结合,成功地在不同时期对其进行了改进,以开发和评估有效的显微镜图像分类模型。评估的深度学习模型在使用的数据集上达到了91.54%的准确率,并为所应用的方法设定了新的标准。此外,还注意在模型的准确性和稳健性之间取得平衡。基于这一科学报告,一种识别显微图像的方法可能会发展到支持材料识别,这表明在材料科学和工程领域的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Letters on Computer Vision and Image Analysis
Electronic Letters on Computer Vision and Image Analysis Computer Science-Computer Vision and Pattern Recognition
CiteScore
2.50
自引率
0.00%
发文量
19
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信