Prediction of Q-Value by Multi-Variable Regression and Novel Genetic Algorithm Based on the Most Influential Parameters

IF 1 Q4 ENGINEERING, CIVIL
M. Hajiazizi, Mohammad Hossein Taban, R. Ghobadian
{"title":"Prediction of Q-Value by Multi-Variable Regression and Novel Genetic Algorithm Based on the Most Influential Parameters","authors":"M. Hajiazizi, Mohammad Hossein Taban, R. Ghobadian","doi":"10.22059/CEIJ.2020.295339.1647","DOIUrl":null,"url":null,"abstract":"The determination of tunnel support, required for tunnel stability and safety, is an important debate in tunnel engineering field. Q-system classification is a technique used to determine the support system of a tunnel in rock. The problem is that all required parameters of support system are not accessible. On the other hand, such accesses are very costly and time consuming. Therefore, it is impossible to determine the Q-value in all cases. This paper identifies the most influential parameters of Q-system using SPSS program. Then, it adopts multi-variable regression (MVR) and genetic algorithm (GA) methods to propose a relation for predicting the Q-value using three influential parameters. To this end, 140 experimental data are used. To assess the obtained models, 34 new experimental data, which are not in the primary dataset, are used. The innovation of this paper is that instead of six parameters, the Q-value is determined using three parameters with the highest impact on it instead of six parameters. In this study, the MVR model, with RMSE=2.68 and correlation coefficient=0.81 for train data and RMSE=2.55 and correlation coefficient=0.80 for test data, showed better performance than GA model, with RMSE=2.90 and correlation coefficient=0.82 for train data and RMSE=2.61 and correlation coefficient=0.84 for test data.","PeriodicalId":43959,"journal":{"name":"Civil Engineering Infrastructures Journal-CEIJ","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Infrastructures Journal-CEIJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/CEIJ.2020.295339.1647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The determination of tunnel support, required for tunnel stability and safety, is an important debate in tunnel engineering field. Q-system classification is a technique used to determine the support system of a tunnel in rock. The problem is that all required parameters of support system are not accessible. On the other hand, such accesses are very costly and time consuming. Therefore, it is impossible to determine the Q-value in all cases. This paper identifies the most influential parameters of Q-system using SPSS program. Then, it adopts multi-variable regression (MVR) and genetic algorithm (GA) methods to propose a relation for predicting the Q-value using three influential parameters. To this end, 140 experimental data are used. To assess the obtained models, 34 new experimental data, which are not in the primary dataset, are used. The innovation of this paper is that instead of six parameters, the Q-value is determined using three parameters with the highest impact on it instead of six parameters. In this study, the MVR model, with RMSE=2.68 and correlation coefficient=0.81 for train data and RMSE=2.55 and correlation coefficient=0.80 for test data, showed better performance than GA model, with RMSE=2.90 and correlation coefficient=0.82 for train data and RMSE=2.61 and correlation coefficient=0.84 for test data.
基于最具影响参数的多变量回归和新遗传算法预测Q值
隧道支护的确定是隧道稳定与安全所必需的,是隧道工程领域的一个重要问题。q -系统分级是一种用于确定岩石隧道支护系统的技术。问题是支持系统所需的所有参数都无法获得。另一方面,这种访问是非常昂贵和耗时的。因此,不可能确定所有情况下的q值。本文利用SPSS软件对q系统的影响参数进行了识别。然后,采用多变量回归(MVR)和遗传算法(GA)方法,提出了三个影响参数预测q值的关系。为此,使用了140个实验数据。为了评估获得的模型,使用了34个新的实验数据,这些数据不在主要数据集中。本文的创新之处在于,用对q值影响最大的三个参数来确定q值,而不是六个参数。在本研究中,列车数据的RMSE=2.68,相关系数=0.81,测试数据的RMSE=2.55,相关系数=0.80,MVR模型的性能优于列车数据的RMSE=2.90,相关系数=0.82,测试数据的RMSE=2.61,相关系数=0.84的GA模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
60.00%
发文量
0
审稿时长
47 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信