{"title":"Improved Q-learning for Energy Management in a Grid-tied PV Microgrid","authors":"Erick O. Arwa;Komla A. Folly","doi":"10.23919/SAIEE.2021.9432896","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved Q-learning method to obtain near-optimal schedules for grid and battery power in a grid-connected electric vehicle charging station for a 24-hour horizon. The charging station is supplied by a solar PV generator with a backup from the utility grid. The grid tariff model is dynamic in line with the smart grid paradigm. First, the mathematical formulation of the problem is developed highlighting each of the cost components considered including battery degradation cost and the real-time tariff for grid power purchase cost. The problem is then formulated as a Markov Decision Process (MDP), i.e., defining each of the parts of a reinforcement learning environment for the charging station’s operation. The MDP is solved using the improved Q-learning algorithm proposed in this paper and the results are compared with the conventional Q-learning method. Specifically, the paper proposes to modify the action-space of a Q-learning algorithm so that each state has just the list of actions that meet a power balance constraint. The Q-table updates are done asynchronously, i.e., the agent does not sweep through the entire state-space in each episode. Simulation results show that the improved Q-learning algorithm returns a 14% lower global cost and achieves higher total rewards than the conventional Q-learning method. Furthermore, it is shown that the improved Q-learning method is more stable in terms of the sensitivity to the learning rate than the conventional Q-learning.","PeriodicalId":42493,"journal":{"name":"SAIEE Africa Research Journal","volume":"112 2","pages":"77-88"},"PeriodicalIF":1.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.23919/SAIEE.2021.9432896","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAIEE Africa Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9432896/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4
Abstract
This paper proposes an improved Q-learning method to obtain near-optimal schedules for grid and battery power in a grid-connected electric vehicle charging station for a 24-hour horizon. The charging station is supplied by a solar PV generator with a backup from the utility grid. The grid tariff model is dynamic in line with the smart grid paradigm. First, the mathematical formulation of the problem is developed highlighting each of the cost components considered including battery degradation cost and the real-time tariff for grid power purchase cost. The problem is then formulated as a Markov Decision Process (MDP), i.e., defining each of the parts of a reinforcement learning environment for the charging station’s operation. The MDP is solved using the improved Q-learning algorithm proposed in this paper and the results are compared with the conventional Q-learning method. Specifically, the paper proposes to modify the action-space of a Q-learning algorithm so that each state has just the list of actions that meet a power balance constraint. The Q-table updates are done asynchronously, i.e., the agent does not sweep through the entire state-space in each episode. Simulation results show that the improved Q-learning algorithm returns a 14% lower global cost and achieves higher total rewards than the conventional Q-learning method. Furthermore, it is shown that the improved Q-learning method is more stable in terms of the sensitivity to the learning rate than the conventional Q-learning.