The detachment mechanism of the rockslide causing the Chamoli February 7th, 2021 debris flow disaster

IF 1.7 4区 地球科学 Q2 Earth and Planetary Sciences
R. Poisel, B. Grasemann
{"title":"The detachment mechanism of the rockslide causing the Chamoli February 7th, 2021 debris flow disaster","authors":"R. Poisel, B. Grasemann","doi":"10.17738/ajes.2022.0009","DOIUrl":null,"url":null,"abstract":"Abstract On February 7th, 2021, a rockslide of about 20 Mio m³ detached in a height of 5600 m asl. from the northern flank of Mount Ronti (Chamoli district, Uttarakhand state, India), turned into a rock mass fall and produced a debris flow. When the rock mass hit the Ronti Gad valley after a fall height of 1800 m the rock mass mixed with melting dead ice together with snow and ice avalanche material of previous debris flows. The debris flow destroyed hydroelectric infrastructure between 10 - 20 km down the valley killing 204 people either working at or visiting the power plants. By combining remote sensing, structural geology and kinematics/mechanical analysis of the rockslide, we demonstrate that a 600 m wide and almost 800 m long block of quartzite, bordered laterally by two joints and a newly formed tension crack on the top detached from an underlying layer of biotite-rich paragneisses. Assuming full hydrostatic heads in both joints and in the tension crack as well as 75% of the full hydrostatic head in the lower boundary surface between quartzites and paragneisses, the rock block analysis yields a friction angle of 32° for both joints, which is a plausible value of the friction angle of joints in quartzites. The detachment of the block has been the result of the widening of the tension crack on top, of a progressive propagation of the lateral joints together with a catastrophic failure of the detachment plane at the border between quartzites and paragneisses. At the time of the failure, all discontinuities must have been almost completely filled with water raising the question, if the frequency of rockslides in the Himalayas is increasing as temperatures rise and permafrost is thawing due to climate change.","PeriodicalId":49319,"journal":{"name":"Austrian Journal of Earth Sciences","volume":"115 1","pages":"191 - 198"},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.17738/ajes.2022.0009","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract On February 7th, 2021, a rockslide of about 20 Mio m³ detached in a height of 5600 m asl. from the northern flank of Mount Ronti (Chamoli district, Uttarakhand state, India), turned into a rock mass fall and produced a debris flow. When the rock mass hit the Ronti Gad valley after a fall height of 1800 m the rock mass mixed with melting dead ice together with snow and ice avalanche material of previous debris flows. The debris flow destroyed hydroelectric infrastructure between 10 - 20 km down the valley killing 204 people either working at or visiting the power plants. By combining remote sensing, structural geology and kinematics/mechanical analysis of the rockslide, we demonstrate that a 600 m wide and almost 800 m long block of quartzite, bordered laterally by two joints and a newly formed tension crack on the top detached from an underlying layer of biotite-rich paragneisses. Assuming full hydrostatic heads in both joints and in the tension crack as well as 75% of the full hydrostatic head in the lower boundary surface between quartzites and paragneisses, the rock block analysis yields a friction angle of 32° for both joints, which is a plausible value of the friction angle of joints in quartzites. The detachment of the block has been the result of the widening of the tension crack on top, of a progressive propagation of the lateral joints together with a catastrophic failure of the detachment plane at the border between quartzites and paragneisses. At the time of the failure, all discontinuities must have been almost completely filled with water raising the question, if the frequency of rockslides in the Himalayas is increasing as temperatures rise and permafrost is thawing due to climate change.
2021年2月7日,造成查莫利泥石流灾害的岩石滑坡的分离机制
摘要2021年2月7日,一个约2000万立方米的岩石滑坡在海拔5600米的高度分离。来自朗蒂山北侧(印度北阿坎德邦查莫利区)的火山喷发,变成了一个岩体坠落并产生了泥石流。当岩体在1800米的坠落高度后撞击Ronti Gad山谷时,岩体与融化的死冰以及之前泥石流的冰雪雪崩物质混合在一起。泥石流摧毁了山谷下游10-20公里的水电基础设施,造成204人在发电厂工作或参观发电厂。通过结合遥感、结构地质学和岩滑的运动学/力学分析,我们证明了一个600米宽、近800米长的石英岩块,横向由两个节理和顶部新形成的张裂界定,与下伏的富含黑云母的副片麻岩层分离。假设两个节理和张力裂缝中的全静水压头,以及石英岩和副片麻岩之间的下边界表面中75%的全静水压力头,岩块分析得出两个节理的摩擦角为32°,这是石英岩中节理摩擦角的合理值。块体的剥离是由于顶部张力裂缝的加宽、侧向节理的逐渐扩展以及石英岩和副片麻岩边界处剥离平面的灾难性破坏造成的。在发生破坏时,所有的不连续面都必须几乎完全充满水,这就提出了一个问题,即喜马拉雅山脉的岩石滑动频率是否随着温度的升高而增加,以及永久冻土是否因气候变化而融化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Austrian Journal of Earth Sciences
Austrian Journal of Earth Sciences Earth and Planetary Sciences-Paleontology
CiteScore
3.10
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: AUSTRIAN JOURNAL OF EARTH SCIENCES is the official journal of the Austrian Geological, Mineralogical and Palaeontological Societies, hosted by a country that is famous for its spectacular mountains that are the birthplace for many geological and mineralogical concepts in modern Earth science. AUSTRIAN JOURNAL OF EARTH SCIENCE focuses on all aspects relevant to the geosciences of the Alps, Bohemian Massif and surrounding areas. Contributions on other regions are welcome if they embed their findings into a conceptual framework that relates the contribution to Alpine-type orogens and Alpine regions in general, and are thus relevant to an international audience. Contributions are subject to peer review and editorial control according to SCI guidelines to ensure that the required standard of scientific excellence is maintained.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信