Online Learning of Open-set Speaker Identification by Active User-registration

Eunkyung Yoo, H. Song, Taehyeong Kim, Chul Lee
{"title":"Online Learning of Open-set Speaker Identification by Active User-registration","authors":"Eunkyung Yoo, H. Song, Taehyeong Kim, Chul Lee","doi":"10.21437/interspeech.2022-25","DOIUrl":null,"url":null,"abstract":"Registering each user’s identity for voice assistants is bur-densome and complex for multi-user environments like a household scenario. This is particularly true when the registration needs to happen on-the-fly with a relatively minimum effort. Most of the prior works for speaker identification (SID) do not seamlessly allow the addition of new speakers as these do not support online updates. To deal with such limitation, we introduce a novel online learning approach to open-set SID that can actively register unknown users in the household setting. Based on MPART (Message Passing Adaptive Resonance The-ory), our method performs online active semi-supervised learning for open-set SID by using speaking embedding vectors to infer new speakers and request user’s identity. Our method pro-gressively improves the overall SID performance without forgetting, making it attractive for many interactive real-world ap-plications. We evaluate our model for the online learning setting of an open-set SID task where new speakers are added on-the-fly, demonstrating its superior performance.","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"1 1","pages":"5065-5069"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2022-25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Registering each user’s identity for voice assistants is bur-densome and complex for multi-user environments like a household scenario. This is particularly true when the registration needs to happen on-the-fly with a relatively minimum effort. Most of the prior works for speaker identification (SID) do not seamlessly allow the addition of new speakers as these do not support online updates. To deal with such limitation, we introduce a novel online learning approach to open-set SID that can actively register unknown users in the household setting. Based on MPART (Message Passing Adaptive Resonance The-ory), our method performs online active semi-supervised learning for open-set SID by using speaking embedding vectors to infer new speakers and request user’s identity. Our method pro-gressively improves the overall SID performance without forgetting, making it attractive for many interactive real-world ap-plications. We evaluate our model for the online learning setting of an open-set SID task where new speakers are added on-the-fly, demonstrating its superior performance.
基于主动用户注册的开放集说话人识别在线学习
对于像家庭场景这样的多用户环境来说,为语音助手注册每个用户的身份既麻烦又复杂。当注册需要以相对最小的工作量进行时,情况尤其如此。大多数先前的扬声器识别(SID)工作都不允许无缝添加新的扬声器,因为这些扬声器不支持在线更新。为了解决这种限制,我们引入了一种新的在线学习方法来开放集SID,该方法可以在家庭环境中主动注册未知用户。基于MPART(Message Passing Adaptive Resonance Theory),我们的方法通过使用语音嵌入向量来推断新的说话者并请求用户身份,对开放集SID进行在线主动半监督学习。我们的方法在不忘记的情况下逐步提高了SID的整体性能,使其对许多交互式现实世界应用程序具有吸引力。我们评估了我们的模型,用于开放集SID任务的在线学习设置,其中动态添加了新的扬声器,展示了其卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信