Analysis of the structure of liners used for the modernisation of brick collectors

IF 0.7 Q4 MECHANICS
L. Wysocki, C. Madryas, J. Grosel
{"title":"Analysis of the structure of liners used for the modernisation of brick collectors","authors":"L. Wysocki, C. Madryas, J. Grosel","doi":"10.2478/sgem-2021-0031","DOIUrl":null,"url":null,"abstract":"Abstract Brick sewers were designed as egg-shaped, pear-shaped, bell-shaped, vaulted, and even rectangular (sometimes with granite ceilings and floor slabs). In exceptional cases, circular sections were also made of brick. Efforts were made in order to ensure optimal flow conditions, and also that the cross-section was adapted to the shape of the rock mass pressure line. This is due to the fact that the most advantageous shapes for masonry collectors are shapes in which no tensile stresses will occur in any part of the cross-section under the influence of external loads. Nevertheless, sewage conduits degrade over time. The boundary conditions of their use also change, which affects the magnitude of mechanical and hydraulic loads. Further use of a sewer in such a case requires its renewal, and less frequently, modernization that results from the necessity to change its function. This is usually done by introducing a new conduit into the interior of the renovated or modernized sewer, which in literature is called a liner. The aim of the analysis was to determine the thickness of the liners that strengthen the structures of brick channels with an inverted egg cross-section and with dimensions of 1050 × 700 mm, which are intended for gravitational sewage systems. The analysis included the performance of variant static and strength calculations for the assumption that the conduit after its modernization will be replaced with a conduit operating in the pressure system, which is a very rare requirement. It was assumed that the best solution would be to use a CIPP (Cured In Place Pipe) liner.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2021-0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Brick sewers were designed as egg-shaped, pear-shaped, bell-shaped, vaulted, and even rectangular (sometimes with granite ceilings and floor slabs). In exceptional cases, circular sections were also made of brick. Efforts were made in order to ensure optimal flow conditions, and also that the cross-section was adapted to the shape of the rock mass pressure line. This is due to the fact that the most advantageous shapes for masonry collectors are shapes in which no tensile stresses will occur in any part of the cross-section under the influence of external loads. Nevertheless, sewage conduits degrade over time. The boundary conditions of their use also change, which affects the magnitude of mechanical and hydraulic loads. Further use of a sewer in such a case requires its renewal, and less frequently, modernization that results from the necessity to change its function. This is usually done by introducing a new conduit into the interior of the renovated or modernized sewer, which in literature is called a liner. The aim of the analysis was to determine the thickness of the liners that strengthen the structures of brick channels with an inverted egg cross-section and with dimensions of 1050 × 700 mm, which are intended for gravitational sewage systems. The analysis included the performance of variant static and strength calculations for the assumption that the conduit after its modernization will be replaced with a conduit operating in the pressure system, which is a very rare requirement. It was assumed that the best solution would be to use a CIPP (Cured In Place Pipe) liner.
砖石集热器现代化用衬板结构分析
摘要砖砌下水道被设计成蛋形、梨形、钟形、拱形,甚至矩形(有时有花岗岩天花板和楼板)。在特殊情况下,圆形部分也由砖制成。为了确保最佳的流动条件,并使横截面适应岩体压力线的形状,我们做出了努力。这是因为砌体收集器最有利的形状是在外部载荷的影响下横截面的任何部分都不会产生拉伸应力的形状。然而,污水管道会随着时间的推移而退化。它们使用的边界条件也会发生变化,这会影响机械和液压负载的大小。在这种情况下,下水道的进一步使用需要更新,而不太频繁地进行现代化,这是由于有必要改变其功能。这通常是通过在翻新或现代化的下水道内部引入新的管道来完成的,在文献中称之为内衬。分析的目的是确定内衬的厚度,该内衬用于加固具有倒置鸡蛋横截面、尺寸为1050×700 mm的砖通道的结构,这些砖通道用于重力污水系统。该分析包括可变静态和强度计算的性能,假设管道现代化后将被在压力系统中运行的管道取代,这是一个非常罕见的要求。据推测,最佳解决方案是使用CIPP(原位固化管)衬管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
20
审稿时长
16 weeks
期刊介绍: An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信