{"title":"A Review Study of Numerical Simulation of Lid-Driven Cavity Flow with Nanofluids","authors":"Mustaque Hussain Borbora, B. Vasu, Ali J. Chamkha","doi":"10.1166/jon.2023.1930","DOIUrl":null,"url":null,"abstract":"Perhaps the most deliberated fluid problem in the field of Computational Fluid Dynamics is the lid driven cavity flow whose simple geometry is used to study the thermal behavior of many engineering applications such as cooling of electronic equipment, solar collectors, thermal storage\n systems, food processing, solar ponds, crystal growth, lubrication technologies and cooling of electrical and mechanical components. Researchers have been devoting much of their time in order to discover innovative methods to enhance the thermal conductivity of conventional fluids. With the\n development of nanotechnology, the concept of nanofluids has gained ground considerably as a new kind of heat transfer fluid. Nanofluid is a new kind of fluid with high thermal conductivity is a mixture of solid nanoparticles and a liquid. This review recapitulates the recent progress of the\n various numerical methods that are used in predicting the influence of several parameters such as type of nanoparticle and host liquid, particle volume concentration, particle size and shape, Brownian diffusion and thermophoresis effect on hydrodynamic and thermal characteristics of convective\n heat transfer using nanofluids in a lid driven cavity.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.1930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Perhaps the most deliberated fluid problem in the field of Computational Fluid Dynamics is the lid driven cavity flow whose simple geometry is used to study the thermal behavior of many engineering applications such as cooling of electronic equipment, solar collectors, thermal storage
systems, food processing, solar ponds, crystal growth, lubrication technologies and cooling of electrical and mechanical components. Researchers have been devoting much of their time in order to discover innovative methods to enhance the thermal conductivity of conventional fluids. With the
development of nanotechnology, the concept of nanofluids has gained ground considerably as a new kind of heat transfer fluid. Nanofluid is a new kind of fluid with high thermal conductivity is a mixture of solid nanoparticles and a liquid. This review recapitulates the recent progress of the
various numerical methods that are used in predicting the influence of several parameters such as type of nanoparticle and host liquid, particle volume concentration, particle size and shape, Brownian diffusion and thermophoresis effect on hydrodynamic and thermal characteristics of convective
heat transfer using nanofluids in a lid driven cavity.
期刊介绍:
Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.