Growing Random Uniform d-ary Trees

Pub Date : 2022-11-29 DOI:10.1007/s00026-022-00621-3
Jean-François Marckert
{"title":"Growing Random Uniform d-ary Trees","authors":"Jean-François Marckert","doi":"10.1007/s00026-022-00621-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\({{\\mathcal {T}}}_{d}(n)\\)</span> be the set of <i>d</i>-ary rooted trees with <i>n</i> internal nodes. We give a method to construct a sequence <span>\\(( \\textbf{t}_{n},n\\ge 0)\\)</span>, where, for any <span>\\(n\\ge 1\\)</span>, <span>\\( \\textbf{t}_{n}\\)</span> has the uniform distribution in <span>\\({{\\mathcal {T}}}_{d}(n)\\)</span>, and <span>\\( \\textbf{t}_{n}\\)</span> is constructed from <span>\\( \\textbf{t}_{n-1}\\)</span> by the addition of a new node, and a rearrangement of the structure of <span>\\( \\textbf{t}_{n-1}\\)</span>. This method is inspired by Rémy’s algorithm which does this job in the binary case, but it is different from it. This provides a method for the random generation of a uniform <i>d</i>-ary tree in <span>\\({{\\mathcal {T}}}_{d}(n)\\)</span> with a cost linear in <i>n</i>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-022-00621-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Let \({{\mathcal {T}}}_{d}(n)\) be the set of d-ary rooted trees with n internal nodes. We give a method to construct a sequence \(( \textbf{t}_{n},n\ge 0)\), where, for any \(n\ge 1\), \( \textbf{t}_{n}\) has the uniform distribution in \({{\mathcal {T}}}_{d}(n)\), and \( \textbf{t}_{n}\) is constructed from \( \textbf{t}_{n-1}\) by the addition of a new node, and a rearrangement of the structure of \( \textbf{t}_{n-1}\). This method is inspired by Rémy’s algorithm which does this job in the binary case, but it is different from it. This provides a method for the random generation of a uniform d-ary tree in \({{\mathcal {T}}}_{d}(n)\) with a cost linear in n.

Abstract Image

分享
查看原文
生长随机均匀树
设\({{\mathcal{T}}_{d}(n)\)是具有n个内部节点的d元根树的集合。我们给出了一个构造序列\(\textbf{t}_{n} ,n\ge 0)\),其中,对于任何\(n\ge 1\),\(\textbf{t}_{n} \)在\({\mathcal{T}}_{d}(n)\)和\(\textbf)中具有均匀分布{t}_{n} \)由\(\textbf)构造{t}_{n-1}\),添加一个新节点,并重新排列\(\textbf)的结构{t}_{n-1}\)。该方法的灵感来自Rémy的算法,该算法在二进制情况下完成这项工作,但与之不同。这提供了一种随机生成\({\mathcal{T}}}_{d}(n)\)中成本线性的一致d元树的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信